A New Antibody–Cytokine Construct Targeting Natural Killer Cells: An Immunotherapeutic Approach to Chronic Lymphocytic Leukemia
In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activ...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Biomolecules |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-273X/15/1/117 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15. scFvB1IL15 was tested in vitro on peripheral blood mononuclear cells (PBMCs) obtained from both different healthy donors (HDs) and CLL patients in order to evaluate its ability to target NK cells and enhance their activation and NK-mediated directed cytotoxicity. scFvB1IL15 specifically induced strong degranulation and cytokine and chemokine production in NK cells in both HD- and CLL patient-derived PBMC samples. Furthermore, compared to IL15 alone, it was able to induce higher levels of NKG2D- and NKp30-activating receptors and restore NK-mediated direct killing in the CLL patient-derived samples. The preliminary data presented in this work suggest that IL15’s targeting of NK cells via scFvB1 potentiates the effects of IL15 and that scFvB1IL15 can be a useful agent for overcoming NK functional gaps and contribute to NK-cell-based immunotherapies. |
---|---|
ISSN: | 2218-273X |