Optical skyrmion lattices accelerating in a free-space mode

Generation of optical skyrmionic beams, topological textures of polarization Stokes vector in the transverse plane and propagating at the longitudinal axis provide a versatile platform for topologically nontrivial optical informatics and light–matter interactions. However, their acceleration along c...

Full description

Saved in:
Bibliographic Details
Main Authors: Haijun Wu, Weijie Zhou, Zhihan Zhu, Yijie Shen
Format: Article
Language:English
Published: AIP Publishing LLC 2025-05-01
Series:APL Photonics
Online Access:http://dx.doi.org/10.1063/5.0255824
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Generation of optical skyrmionic beams, topological textures of polarization Stokes vector in the transverse plane and propagating at the longitudinal axis provide a versatile platform for topologically nontrivial optical informatics and light–matter interactions. However, their acceleration along curved trajectories is to be studied. In this study, we experimentally demonstrate the first accelerating skyrmion lattices conveyed by Airy structured light, characterized by topologically stable skyrmion textures with self-acceleration along parabolic trajectories. We quantify topological stability using the Skyrme number Nsk, where |Nsk| = 1 represents an ideal skyrmion. Our experiments demonstrate that the skyrmion unit cell can maintain a Skyrme number |Nsk| > 0.9 within a propagation range of ±1.22 zR (zR is the Rayleigh length) upon parabolic acceleration. Notably, the meron structure remains |Nsk| stable within 0.5 ± 0.02 over a significantly extended range of ±3.06 zR. Our work provides a new potential carrier for topologically robust information distribution, particle sorting, and manipulation.
ISSN:2378-0967