Linking the microarchitecture of neurotransmitter systems to large-scale MEG resting state networks

Summary: Neuronal oscillations are ubiquitous in brain activity at all scales and their synchronization dynamics are essential for information processing in neuronal systems. The underlying synaptic mechanisms, while mainly based on GABA- and glutamatergic neurotransmission, are influenced by neurom...

Full description

Saved in:
Bibliographic Details
Main Authors: Felix Siebenhühner, J. Matias Palva, Satu Palva
Format: Article
Language:English
Published: Elsevier 2024-11-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004224023368
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Neuronal oscillations are ubiquitous in brain activity at all scales and their synchronization dynamics are essential for information processing in neuronal systems. The underlying synaptic mechanisms, while mainly based on GABA- and glutamatergic neurotransmission, are influenced by neuromodulatory systems that have highly variable densities of neurotransmitter receptors and transporters across the cortical mantle. How they constrain the network structures of interacting oscillations has remained a central unaddressed question. We asked here whether the receptor and transporter densities covary with the frequency-specific neuroanatomical patterns of inter-areal phase synchrony (PS) and amplitude correlation (AC) networks in resting-state magnetoencephalography (MEG) data. Network centrality in delta and gamma frequencies covaried positively with GABA-, NMDA-, dopaminergic-, and most serotonergic receptor and transporter densities while covariance was negative in alpha and beta bands. These results show that local receptor microarchitecture shapes macro-scale oscillation networks in spectrally specific patterns.
ISSN:2589-0042