Estimates from below for characteristic functions of probability laws

Let $varphi$ be the characteristic function of a probabilitylaw F that is analytic in $mathbb{D}_{R}={zcolon |z|<R},$ $0<Rleq+infty,$ $M(r,varphi)=maxleft{|varphi(z)|colon|z|=r<Right}$ and $W_{F}(x)=1-F(x)+F(-x),$ $xgeq 0.$ Aconnection between the growth of $M(r,varphi)$ and thedecrease it...

Full description

Saved in:
Bibliographic Details
Main Authors: M. I. Parolya, M. M. Sheremeta
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2013-04-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/texts/2013/39_1/54-66.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849415641232048128
author M. I. Parolya
M. M. Sheremeta
author_facet M. I. Parolya
M. M. Sheremeta
author_sort M. I. Parolya
collection DOAJ
description Let $varphi$ be the characteristic function of a probabilitylaw F that is analytic in $mathbb{D}_{R}={zcolon |z|<R},$ $0<Rleq+infty,$ $M(r,varphi)=maxleft{|varphi(z)|colon|z|=r<Right}$ and $W_{F}(x)=1-F(x)+F(-x),$ $xgeq 0.$ Aconnection between the growth of $M(r,varphi)$ and thedecrease it of $W_{F}(x)$ is investigated in terms of estimatesfrom below. For entire characteristic functions {it} is proved,for example, that if $ln x_kgeqlambdaln(frac{1}{x_k}lnfrac{1}{W_{F}(x_k)})$ for someincreasing sequence $(x_k)$ such that $x_{k+1}=O(x_k),kightarrowinfty,$ then $lnfrac{ln M(r,varphi)}{r}geq(1+o(1))lambdaln r$ as $rightarrow+infty.$
format Article
id doaj-art-16fbe6acf2db4b0a8a95c1483ba96b10
institution Kabale University
issn 1027-4634
language deu
publishDate 2013-04-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-16fbe6acf2db4b0a8a95c1483ba96b102025-08-20T03:33:27ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342013-04-013915466Estimates from below for characteristic functions of probability lawsM. I. ParolyaM. M. SheremetaLet $varphi$ be the characteristic function of a probabilitylaw F that is analytic in $mathbb{D}_{R}={zcolon |z|<R},$ $0<Rleq+infty,$ $M(r,varphi)=maxleft{|varphi(z)|colon|z|=r<Right}$ and $W_{F}(x)=1-F(x)+F(-x),$ $xgeq 0.$ Aconnection between the growth of $M(r,varphi)$ and thedecrease it of $W_{F}(x)$ is investigated in terms of estimatesfrom below. For entire characteristic functions {it} is proved,for example, that if $ln x_kgeqlambdaln(frac{1}{x_k}lnfrac{1}{W_{F}(x_k)})$ for someincreasing sequence $(x_k)$ such that $x_{k+1}=O(x_k),kightarrowinfty,$ then $lnfrac{ln M(r,varphi)}{r}geq(1+o(1))lambdaln r$ as $rightarrow+infty.$http://matstud.org.ua/texts/2013/39_1/54-66.pdfcharacteristic functionprobability lawlower estimate
spellingShingle M. I. Parolya
M. M. Sheremeta
Estimates from below for characteristic functions of probability laws
Математичні Студії
characteristic function
probability law
lower estimate
title Estimates from below for characteristic functions of probability laws
title_full Estimates from below for characteristic functions of probability laws
title_fullStr Estimates from below for characteristic functions of probability laws
title_full_unstemmed Estimates from below for characteristic functions of probability laws
title_short Estimates from below for characteristic functions of probability laws
title_sort estimates from below for characteristic functions of probability laws
topic characteristic function
probability law
lower estimate
url http://matstud.org.ua/texts/2013/39_1/54-66.pdf
work_keys_str_mv AT miparolya estimatesfrombelowforcharacteristicfunctionsofprobabilitylaws
AT mmsheremeta estimatesfrombelowforcharacteristicfunctionsofprobabilitylaws