Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping

We propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"...

Full description

Saved in:
Bibliographic Details
Main Authors: Shahid Hussain, Xinlong Feng, Arafat Hussain, Ahmed Bakhet
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/7/445
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849406943981993984
author Shahid Hussain
Xinlong Feng
Arafat Hussain
Ahmed Bakhet
author_facet Shahid Hussain
Xinlong Feng
Arafat Hussain
Ahmed Bakhet
author_sort Shahid Hussain
collection DOAJ
description We propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>) with mixed finite element methods (P1b–P1 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>2</mn></msub></semantics></math></inline-formula>–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>1</mn></msub></semantics></math></inline-formula>) for spatial discretization of velocity and pressure. This approach addresses the key challenges of fractional models, including nonlocality and memory effects, while maintaining stability in the presence of the nonlinear damping term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>γ</mi><mo>|</mo><mi mathvariant="bold">u</mi><mo>|</mo></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msup><mi mathvariant="bold">u</mi></mrow></semantics></math></inline-formula>, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. We prove unconditional stability for both semi-discrete and fully discrete schemes and derive optimal error estimates for the velocity and pressure components. Numerical experiments validate the theoretical results. Convergence tests using exact solutions, along with benchmark problems such as backward-facing channel flow and lid-driven cavity flow, confirm the accuracy and reliability of the method. The computed velocity contours and streamlines show close agreement with analytical expectations. This scheme is particularly effective for capturing anomalous diffusion in Newtonian and turbulent flows, and it offers a strong foundation for future extensions to viscoelastic and biological fluid models.
format Article
id doaj-art-16fa91a59dba4b7692f89c7521175cd2
institution Kabale University
issn 2504-3110
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-16fa91a59dba4b7692f89c7521175cd22025-08-20T03:36:14ZengMDPI AGFractal and Fractional2504-31102025-07-019744510.3390/fractalfract9070445Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear DampingShahid Hussain0Xinlong Feng1Arafat Hussain2Ahmed Bakhet3College of Mathematics and System Sciences, Xinjiang University, Urumqi 830049, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830049, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830049, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830049, ChinaWe propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>) with mixed finite element methods (P1b–P1 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>2</mn></msub></semantics></math></inline-formula>–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mn>1</mn></msub></semantics></math></inline-formula>) for spatial discretization of velocity and pressure. This approach addresses the key challenges of fractional models, including nonlocality and memory effects, while maintaining stability in the presence of the nonlinear damping term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>γ</mi><mo>|</mo><mi mathvariant="bold">u</mi><mo>|</mo></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msup><mi mathvariant="bold">u</mi></mrow></semantics></math></inline-formula>, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. We prove unconditional stability for both semi-discrete and fully discrete schemes and derive optimal error estimates for the velocity and pressure components. Numerical experiments validate the theoretical results. Convergence tests using exact solutions, along with benchmark problems such as backward-facing channel flow and lid-driven cavity flow, confirm the accuracy and reliability of the method. The computed velocity contours and streamlines show close agreement with analytical expectations. This scheme is particularly effective for capturing anomalous diffusion in Newtonian and turbulent flows, and it offers a strong foundation for future extensions to viscoelastic and biological fluid models.https://www.mdpi.com/2504-3110/9/7/445time-fractional Navier–Stokes equationsCaputo fractional derivativesfinite element methodnonlinear dampingerror estimatesbackward flow
spellingShingle Shahid Hussain
Xinlong Feng
Arafat Hussain
Ahmed Bakhet
Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
Fractal and Fractional
time-fractional Navier–Stokes equations
Caputo fractional derivatives
finite element method
nonlinear damping
error estimates
backward flow
title Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
title_full Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
title_fullStr Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
title_full_unstemmed Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
title_short Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
title_sort finite element method for time fractional navier stokes equations with nonlinear damping
topic time-fractional Navier–Stokes equations
Caputo fractional derivatives
finite element method
nonlinear damping
error estimates
backward flow
url https://www.mdpi.com/2504-3110/9/7/445
work_keys_str_mv AT shahidhussain finiteelementmethodfortimefractionalnavierstokesequationswithnonlineardamping
AT xinlongfeng finiteelementmethodfortimefractionalnavierstokesequationswithnonlineardamping
AT arafathussain finiteelementmethodfortimefractionalnavierstokesequationswithnonlineardamping
AT ahmedbakhet finiteelementmethodfortimefractionalnavierstokesequationswithnonlineardamping