Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3

In this article, we consider the following double critical fractional Schrödinger-Poisson system involving p-Laplacian in R3{{\mathbb{R}}}^{3} of the form: εsp(−Δ)psu+V(x)∣u∣p−2u−ϕ∣u∣ps♯−2u=∣u∣ps*−2u+f(u)inR3,εsp(−Δ)sϕ=∣u∣ps♯inR3,\left\{\begin{array}{l}{\varepsilon }^{sp}{\left(-\Delta )}_{p}^{s}u+{...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Shuaishuai, Song Yueqiang, Shi Shaoyun
Format: Article
Language:English
Published: De Gruyter 2025-02-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2024-0063
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832570476639027200
author Liang Shuaishuai
Song Yueqiang
Shi Shaoyun
author_facet Liang Shuaishuai
Song Yueqiang
Shi Shaoyun
author_sort Liang Shuaishuai
collection DOAJ
description In this article, we consider the following double critical fractional Schrödinger-Poisson system involving p-Laplacian in R3{{\mathbb{R}}}^{3} of the form: εsp(−Δ)psu+V(x)∣u∣p−2u−ϕ∣u∣ps♯−2u=∣u∣ps*−2u+f(u)inR3,εsp(−Δ)sϕ=∣u∣ps♯inR3,\left\{\begin{array}{l}{\varepsilon }^{sp}{\left(-\Delta )}_{p}^{s}u+{\mathcal{V}}\left(x){| u| }^{p-2}u-\phi {| u| }^{{p}_{s}^{\sharp }-2}u={| u| }^{{p}_{s}^{* }-2}u+f\left(u)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3},\\ {\varepsilon }^{sp}{\left(-\Delta )}^{s}\phi ={| u| }^{{p}_{s}^{\sharp }}\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3},\end{array}\right. where ε>0\varepsilon \gt 0 is a positive parameter, s∈(34,1)s\in \left(\frac{3}{4},1), (−Δ)ps{\left(-\Delta )}_{p}^{s} is the fractional p-Laplacian operator, p∈(32,3)p\in \left(\frac{3}{2},3), ps*=3p3−sp{p}_{s}^{* }=\frac{3p}{3-sp} is the Sobolev critical exponent, ps♯=p2(3+2s)(3−sp){p}_{s}^{\sharp }=\frac{p}{2}\frac{\left(3+2s)}{\left(3-sp)} is the upper exponent in the sense of the Hardy-Littlewood-Sobolev inequality, V(x):R3→R{\mathcal{V}}\left(x):{{\mathbb{R}}}^{3}\to {\mathbb{R}} symbolizes a continuous potential function with a local minimum, and the continuous function ff possesses subcritical growth. With the help of well-known penalization methods and Ljusternik-Schnirelmann category theory, we use the topological arguments to attain the multiplicity and concentration of the positive solutions for the above system.
format Article
id doaj-art-16cf069f25134fd8af4bf75e42215863
institution Kabale University
issn 2191-950X
language English
publishDate 2025-02-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj-art-16cf069f25134fd8af4bf75e422158632025-02-02T15:44:38ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2025-02-011414727410.1515/anona-2024-0063Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3Liang Shuaishuai0Song Yueqiang1Shi Shaoyun2School of Mathematics, Jilin University, Changchun 130022, Jilin, P.R. ChinaCollege of Mathematics, Changchun Normal University, Changchun, 130032, P.R. ChinaSchool of Mathematics, Jilin University, Changchun 130022, Jilin, P.R. ChinaIn this article, we consider the following double critical fractional Schrödinger-Poisson system involving p-Laplacian in R3{{\mathbb{R}}}^{3} of the form: εsp(−Δ)psu+V(x)∣u∣p−2u−ϕ∣u∣ps♯−2u=∣u∣ps*−2u+f(u)inR3,εsp(−Δ)sϕ=∣u∣ps♯inR3,\left\{\begin{array}{l}{\varepsilon }^{sp}{\left(-\Delta )}_{p}^{s}u+{\mathcal{V}}\left(x){| u| }^{p-2}u-\phi {| u| }^{{p}_{s}^{\sharp }-2}u={| u| }^{{p}_{s}^{* }-2}u+f\left(u)\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3},\\ {\varepsilon }^{sp}{\left(-\Delta )}^{s}\phi ={| u| }^{{p}_{s}^{\sharp }}\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3},\end{array}\right. where ε>0\varepsilon \gt 0 is a positive parameter, s∈(34,1)s\in \left(\frac{3}{4},1), (−Δ)ps{\left(-\Delta )}_{p}^{s} is the fractional p-Laplacian operator, p∈(32,3)p\in \left(\frac{3}{2},3), ps*=3p3−sp{p}_{s}^{* }=\frac{3p}{3-sp} is the Sobolev critical exponent, ps♯=p2(3+2s)(3−sp){p}_{s}^{\sharp }=\frac{p}{2}\frac{\left(3+2s)}{\left(3-sp)} is the upper exponent in the sense of the Hardy-Littlewood-Sobolev inequality, V(x):R3→R{\mathcal{V}}\left(x):{{\mathbb{R}}}^{3}\to {\mathbb{R}} symbolizes a continuous potential function with a local minimum, and the continuous function ff possesses subcritical growth. With the help of well-known penalization methods and Ljusternik-Schnirelmann category theory, we use the topological arguments to attain the multiplicity and concentration of the positive solutions for the above system.https://doi.org/10.1515/anona-2024-0063schrödinger-poisson systemdouble criticalfractional p-laplacevariational methodsljusternik-schnirelmann category35b3335j2035j6047j3058e05
spellingShingle Liang Shuaishuai
Song Yueqiang
Shi Shaoyun
Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3
Advances in Nonlinear Analysis
schrödinger-poisson system
double critical
fractional p-laplace
variational methods
ljusternik-schnirelmann category
35b33
35j20
35j60
47j30
58e05
title Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3
title_full Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3
title_fullStr Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3
title_full_unstemmed Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3
title_short Concentrating solutions for double critical fractional Schrödinger-Poisson system with p-Laplacian in ℝ3
title_sort concentrating solutions for double critical fractional schrodinger poisson system with p laplacian in r3
topic schrödinger-poisson system
double critical
fractional p-laplace
variational methods
ljusternik-schnirelmann category
35b33
35j20
35j60
47j30
58e05
url https://doi.org/10.1515/anona-2024-0063
work_keys_str_mv AT liangshuaishuai concentratingsolutionsfordoublecriticalfractionalschrodingerpoissonsystemwithplaplacianinr3
AT songyueqiang concentratingsolutionsfordoublecriticalfractionalschrodingerpoissonsystemwithplaplacianinr3
AT shishaoyun concentratingsolutionsfordoublecriticalfractionalschrodingerpoissonsystemwithplaplacianinr3