Beyond Performance: Explaining and Ensuring Fairness in Student Academic Performance Prediction with Machine Learning

This study addresses fairness in machine learning for student academic performance prediction using the UCI Student Performance dataset. We comparatively evaluate logistic regression, Random Forest, and XGBoost, integrating the Synthetic Minority Oversampling Technique (SMOTE) to address class imbal...

Full description

Saved in:
Bibliographic Details
Main Authors: Kadir Kesgin, Salih Kiraz, Selahattin Kosunalp, Bozhana Stoycheva
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8409
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study addresses fairness in machine learning for student academic performance prediction using the UCI Student Performance dataset. We comparatively evaluate logistic regression, Random Forest, and XGBoost, integrating the Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance and 5-fold cross-validation for robust model training. A comprehensive fairness analysis is conducted, considering sensitive attributes such as gender, school type, and socioeconomic factors, including parental education (Medu and Fedu), cohabitation status (Pstatus), and family size (famsize). Using the AIF360 library, we compute the demographic parity difference (DP) and Equalized Odds Difference (EO) to assess model biases across diverse subgroups. Our results demonstrate that XGBoost achieves high predictive performance (accuracy: 0.789; F1 score: 0.803) while maintaining low bias for socioeconomic attributes, offering a balanced approach to fairness and performance. A sensitivity analysis of bias mitigation strategies further enhances the study, advancing equitable artificial intelligence in education by incorporating socially relevant factors.
ISSN:2076-3417