Compensated integrability on tori; a priori estimate for space-periodic gas flows
We extend our theory of Compensated Integrability of positive symmetric tensors, to the case where the domain is the product of a linear space $\mathbb{R}^k$ and of a torus $\mathbb{R}^m/\Lambda $, $\Lambda $ being a lattice of $\mathbb{R}^m$. We apply our abstract results in two contexts, for which...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.654/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206134566289408 |
---|---|
author | Serre, Denis |
author_facet | Serre, Denis |
author_sort | Serre, Denis |
collection | DOAJ |
description | We extend our theory of Compensated Integrability of positive symmetric tensors, to the case where the domain is the product of a linear space $\mathbb{R}^k$ and of a torus $\mathbb{R}^m/\Lambda $, $\Lambda $ being a lattice of $\mathbb{R}^m$. We apply our abstract results in two contexts, for which $k=1$ is associated with a time variable, while $m=d$ is a space dimension. On the one hand to $d$-dimensional inviscid gas dynamics, governed by the Euler equations, when the initial data is space-periodic; we obtain an a priori space-time estimate of our beloved quantity $\rho ^{\frac{1}{d}}p$. On the other hand to hard spheres dynamics in a periodic box $L\mathbb{T}_d$. We obtain a weighted estimate of the average number of collisions per unit time, provided that the “linear density” $Na/L$ ($N$ particles of radius $a$) is smaller than some threshold. |
format | Article |
id | doaj-art-16aa702ba17440d1b09453c61dc99c13 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-16aa702ba17440d1b09453c61dc99c132025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111425144410.5802/crmath.65410.5802/crmath.654Compensated integrability on tori; a priori estimate for space-periodic gas flowsSerre, Denis0École Normale Supérieure de Lyon, U.M.P.A., UMR CNRS–ENSL # 5669. 46 allée d’Italie, 69364 Lyon cedex 07. FranceWe extend our theory of Compensated Integrability of positive symmetric tensors, to the case where the domain is the product of a linear space $\mathbb{R}^k$ and of a torus $\mathbb{R}^m/\Lambda $, $\Lambda $ being a lattice of $\mathbb{R}^m$. We apply our abstract results in two contexts, for which $k=1$ is associated with a time variable, while $m=d$ is a space dimension. On the one hand to $d$-dimensional inviscid gas dynamics, governed by the Euler equations, when the initial data is space-periodic; we obtain an a priori space-time estimate of our beloved quantity $\rho ^{\frac{1}{d}}p$. On the other hand to hard spheres dynamics in a periodic box $L\mathbb{T}_d$. We obtain a weighted estimate of the average number of collisions per unit time, provided that the “linear density” $Na/L$ ($N$ particles of radius $a$) is smaller than some threshold.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.654/Compensated integrabilityperfect gasbilliardperiodic data |
spellingShingle | Serre, Denis Compensated integrability on tori; a priori estimate for space-periodic gas flows Comptes Rendus. Mathématique Compensated integrability perfect gas billiard periodic data |
title | Compensated integrability on tori; a priori estimate for space-periodic gas flows |
title_full | Compensated integrability on tori; a priori estimate for space-periodic gas flows |
title_fullStr | Compensated integrability on tori; a priori estimate for space-periodic gas flows |
title_full_unstemmed | Compensated integrability on tori; a priori estimate for space-periodic gas flows |
title_short | Compensated integrability on tori; a priori estimate for space-periodic gas flows |
title_sort | compensated integrability on tori a priori estimate for space periodic gas flows |
topic | Compensated integrability perfect gas billiard periodic data |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.654/ |
work_keys_str_mv | AT serredenis compensatedintegrabilityontoriaprioriestimateforspaceperiodicgasflows |