Deep-learning based electromagnetic navigation system for transthoracic percutaneous puncture of small pulmonary nodules

Abstract Percutaneous transthoracic puncture of small pulmonary nodules is technically challenging. We developed a novel electromagnetic navigation puncture system for the puncture of sub-centimeter lung nodules by combining multiple deep learning models with electromagnetic and spatial localization...

Full description

Saved in:
Bibliographic Details
Main Authors: Muyun Peng, Xinyi Fan, Qikang Hu, Xilong Mei, Bin Wang, Zeyu Wu, Huali Hu, Lei Tang, Xinhang Hu, Yanyi Yang, Chunxia Qin, Huajie Zhang, Qun Liu, Xiaofeng Chen, Fenglei Yu
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-85209-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Percutaneous transthoracic puncture of small pulmonary nodules is technically challenging. We developed a novel electromagnetic navigation puncture system for the puncture of sub-centimeter lung nodules by combining multiple deep learning models with electromagnetic and spatial localization technologies. We compared the performance of DL-EMNS and conventional CT-guided methods in percutaneous lung punctures using phantom and animal models. In the phantom study, the DL-EMNS group showed a higher technical success rate (95.6% vs. 77.8%, p = 0.027), smaller error (1.47 ± 1.62 mm vs. 3.98 ± 2.58 mm, p < 0.001), shorter procedure duration (291.56 ± 150.30 vs. 676.44 ± 246.12 s, p < 0.001), and fewer number of CT acquisitions (1.2 ± 0.66 vs. 2.93 ± 0.98, p < 0.001) compared to the traditional CT-guided group. In the animal study, DL-EMNS significantly improved technical success rate (100% vs. 84.0%, p = 0.015), reduced operation time (121.36 ± 38.87 s vs. 321.60 ± 129.12 s, p < 0.001), number of CT acquisitions (1.09 ± 0.29 vs. 2.96 ± 0.73, p < 0.001) and complication rate (0% vs. 20%, p = 0.002). In conclusion, with the assistance of DL-EMNS, the operators got better performance in the percutaneous puncture of small pulmonary nodules.
ISSN:2045-2322