Uncertainty quantification in modeling HIV viral mechanics

We consider an in-host model for HIV-1 infection dynamics developed and validated with patient data in earlier work [7]. We revisit the earlier model in light of progress over the last several years in understanding HIV-1 progression in humans. We then consider statistical models to describe the da...

Full description

Saved in:
Bibliographic Details
Main Authors: H. T. Banks, Robert Baraldi, Karissa Cross, Kevin Flores, Christina McChesney, Laura Poag, Emma Thorpe
Format: Article
Language:English
Published: AIMS Press 2015-05-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2015.12.937
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590099380961280
author H. T. Banks
Robert Baraldi
Karissa Cross
Kevin Flores
Christina McChesney
Laura Poag
Emma Thorpe
author_facet H. T. Banks
Robert Baraldi
Karissa Cross
Kevin Flores
Christina McChesney
Laura Poag
Emma Thorpe
author_sort H. T. Banks
collection DOAJ
description We consider an in-host model for HIV-1 infection dynamics developed and validated with patient data in earlier work [7]. We revisit the earlier model in light of progress over the last several years in understanding HIV-1 progression in humans. We then consider statistical models to describe the data and use these with residual plots in generalized least squares problems to develop accurate descriptions of the proper weights for the data. We use recent parameter subset selection techniques [5,6] to investigate the impact of estimated parameters on the corresponding selection scores. Bootstrapping and asymptotic theory are compared in the context of confidence intervals for the resulting parameter estimates.
format Article
id doaj-art-16898907d09444099e8fdbe4d3397156
institution Kabale University
issn 1551-0018
language English
publishDate 2015-05-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj-art-16898907d09444099e8fdbe4d33971562025-01-24T02:33:19ZengAIMS PressMathematical Biosciences and Engineering1551-00182015-05-0112593796410.3934/mbe.2015.12.937Uncertainty quantification in modeling HIV viral mechanicsH. T. Banks0Robert Baraldi1Karissa Cross2Kevin Flores3Christina McChesney4Laura Poag5Emma Thorpe6Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8212Center for Research in Scientic Computation, North Carolina State University, Raleigh, NC 27695-8212Center for Research in Scientic Computation, North Carolina State University, Raleigh, NC 27695-8212Center for Research in Scientic Computation, North Carolina State University, Raleigh, NC 27695-8212Center for Research in Scientic Computation, North Carolina State University, Raleigh, NC 27695-8212Center for Research in Scientic Computation, North Carolina State University, Raleigh, NC 27695-8212Center for Research in Scientic Computation, North Carolina State University, Raleigh, NC 27695-8212We consider an in-host model for HIV-1 infection dynamics developed and validated with patient data in earlier work [7]. We revisit the earlier model in light of progress over the last several years in understanding HIV-1 progression in humans. We then consider statistical models to describe the data and use these with residual plots in generalized least squares problems to develop accurate descriptions of the proper weights for the data. We use recent parameter subset selection techniques [5,6] to investigate the impact of estimated parameters on the corresponding selection scores. Bootstrapping and asymptotic theory are compared in the context of confidence intervals for the resulting parameter estimates.https://www.aimspress.com/article/doi/10.3934/mbe.2015.12.937bootstrapping.uncertainty quantificationparameter subset selectionasymptotic distributionsin-host hiv-1 progression models
spellingShingle H. T. Banks
Robert Baraldi
Karissa Cross
Kevin Flores
Christina McChesney
Laura Poag
Emma Thorpe
Uncertainty quantification in modeling HIV viral mechanics
Mathematical Biosciences and Engineering
bootstrapping.
uncertainty quantification
parameter subset selection
asymptotic distributions
in-host hiv-1 progression models
title Uncertainty quantification in modeling HIV viral mechanics
title_full Uncertainty quantification in modeling HIV viral mechanics
title_fullStr Uncertainty quantification in modeling HIV viral mechanics
title_full_unstemmed Uncertainty quantification in modeling HIV viral mechanics
title_short Uncertainty quantification in modeling HIV viral mechanics
title_sort uncertainty quantification in modeling hiv viral mechanics
topic bootstrapping.
uncertainty quantification
parameter subset selection
asymptotic distributions
in-host hiv-1 progression models
url https://www.aimspress.com/article/doi/10.3934/mbe.2015.12.937
work_keys_str_mv AT htbanks uncertaintyquantificationinmodelinghivviralmechanics
AT robertbaraldi uncertaintyquantificationinmodelinghivviralmechanics
AT karissacross uncertaintyquantificationinmodelinghivviralmechanics
AT kevinflores uncertaintyquantificationinmodelinghivviralmechanics
AT christinamcchesney uncertaintyquantificationinmodelinghivviralmechanics
AT laurapoag uncertaintyquantificationinmodelinghivviralmechanics
AT emmathorpe uncertaintyquantificationinmodelinghivviralmechanics