Riesz potential operators and inverses via fractional centred derivatives

Fractional centred differences and derivatives definitions are proposed, generalizing to real orders the existing ones valid for even and odd positive integer orders. For each one, suitable integral formulations are obtained. The computations of the involved integrals lead to new generalizations of...

Full description

Saved in:
Bibliographic Details
Main Author: Manuel Duarte Ortigueira
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/48391
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fractional centred differences and derivatives definitions are proposed, generalizing to real orders the existing ones valid for even and odd positive integer orders. For each one, suitable integral formulations are obtained. The computations of the involved integrals lead to new generalizations of the Cauchy integral derivative. To compute this integral, a special two-straight-line path was used. With this the referred integrals lead to the well-known Riesz potential operators and their inverses that emerge as true fractional centred derivatives, but that can be computed through summations similar to the well-known Grünwald-Letnikov derivatives.
ISSN:0161-1712
1687-0425