Palmitoylation regulators drive the progression of clear cell renal cell carcinoma through Inhibition of cuproptosis: insights into the role of ZDHHC18

Abstract Background Protein palmitoylation is a reversible post-translational modification that increases protein hydrophobicity, which can affect protein localization, stability, and function. Although palmitoylation is frequently observed in various cancers, the specific mechanisms by which it inf...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Xu, Xiao-chao Chen, Yang Wang, Jian-chun Chen, Zhi-jun Cao, Ru Huang, Chao Chen, Dao-rong Hou, Min-jun Jiang, Chen Xu
Format: Article
Language:English
Published: BMC 2025-06-01
Series:Cancer Cell International
Subjects:
Online Access:https://doi.org/10.1186/s12935-025-03882-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Protein palmitoylation is a reversible post-translational modification that increases protein hydrophobicity, which can affect protein localization, stability, and function. Although palmitoylation is frequently observed in various cancers, the specific mechanisms by which it influences clear cell renal cell carcinoma (ccRCC) are still not well understood. Methods This study used transcriptome expression profiles and clinical characteristics of clear cell renal cell carcinoma (ccRCC) obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Kaplan-Meier (KM) survival analysis was performed to evaluate patient survival. Consensus clustering was applied to identify tumor palmitoylation patterns. A total of 101 different machine learning methods were used to develop predictive models. Functional enrichment analyses were conducted using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Variation Analysis (GSVA). Results Of the 34 prognosis-related palmitoylation-related genes (PRGs), 29 were used to cluster patients in the TCGA-KIRC cohort, leading to the identification of four palmitoylation clusters. We developed a risk model and a nomogram based on palmitoylation scores to enhance risk classification. Functional analysis indicated that high-risk patients exhibited disrupted fatty acid metabolism. Correlation analysis identified ZDHHC18 as a potential hub gene associated with impaired fatty acid metabolism and cuproptosis. Finally, we validated the role of ZDHHC18 in ccRCC proliferation through in vitro experiments. Conclusion Our research demonstrated that PRGs play a crucial role in the development of clear cell renal cell carcinoma (ccRCC). A nomogram based on palmitoylation scores may accurately predict the prognosis of ccRCC patients. Furthermore, the palmitoylation regulator ZDHHC18 affects cuproptosis in ccRCC, which in turn impacts patient survival.
ISSN:1475-2867