Flexural Behavior of Concrete Beam and Slab with Novel Demountable Connectors
In this study, a new type of novel demountable connector is proposed to enable complete dry connections between concrete beams and slabs, facilitating the full demountable design of these components. To analyze and evaluate the flexural performance of the concrete beams with the novel demountable co...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-08-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/15/2776 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this study, a new type of novel demountable connector is proposed to enable complete dry connections between concrete beams and slabs, facilitating the full demountable design of these components. To analyze and evaluate the flexural performance of the concrete beams with the novel demountable connectors, a finite element model was developed, which was then validated by previous tests. The results indicate that bolt diameter, bolt strength, channel spacing, and concrete slab thickness have a significant impact on peak load, while concrete beam strength, concrete slab strength, and flange width have minimal influence. Similarly, flexural stiffness is strongly affected by bolt diameter, channel spacing, concrete slab strength, slab thickness, and flange width, whereas bolt strength and concrete beam strength play a lesser role. Notably, the finite element analysis confirms the absence of plastic deformation in most bolts and end plates, ensuring that the flexural components are designed for effective disassembly. A theoretical model for calculating the ultimate flexural moment of demountable concrete beams under different conditions is also proposed, and it agrees with the ultimate flexural moment from numerical analysis. |
|---|---|
| ISSN: | 2075-5309 |