Flexural Behavior of Concrete Beam and Slab with Novel Demountable Connectors

In this study, a new type of novel demountable connector is proposed to enable complete dry connections between concrete beams and slabs, facilitating the full demountable design of these components. To analyze and evaluate the flexural performance of the concrete beams with the novel demountable co...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Li, Wei Chen, Huaming Jiang, Hongzhi Su
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/15/2776
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a new type of novel demountable connector is proposed to enable complete dry connections between concrete beams and slabs, facilitating the full demountable design of these components. To analyze and evaluate the flexural performance of the concrete beams with the novel demountable connectors, a finite element model was developed, which was then validated by previous tests. The results indicate that bolt diameter, bolt strength, channel spacing, and concrete slab thickness have a significant impact on peak load, while concrete beam strength, concrete slab strength, and flange width have minimal influence. Similarly, flexural stiffness is strongly affected by bolt diameter, channel spacing, concrete slab strength, slab thickness, and flange width, whereas bolt strength and concrete beam strength play a lesser role. Notably, the finite element analysis confirms the absence of plastic deformation in most bolts and end plates, ensuring that the flexural components are designed for effective disassembly. A theoretical model for calculating the ultimate flexural moment of demountable concrete beams under different conditions is also proposed, and it agrees with the ultimate flexural moment from numerical analysis.
ISSN:2075-5309