Improving EEG classification of alcoholic and control subjects using DWT-CNN-BiGRU with various noise filtering techniques

Electroencephalogram (EEG) signal analysis plays a vital role in diagnosing and monitoring alcoholism, where accurate classification of individuals into alcoholic and control groups is essential. However, the inherent noise and complexity of EEG signals pose significant challenges. This study invest...

Full description

Saved in:
Bibliographic Details
Main Authors: Nidhi Patel, Jaiprakash Verma, Swati Jain
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-08-01
Series:Frontiers in Neuroinformatics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fninf.2025.1618050/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electroencephalogram (EEG) signal analysis plays a vital role in diagnosing and monitoring alcoholism, where accurate classification of individuals into alcoholic and control groups is essential. However, the inherent noise and complexity of EEG signals pose significant challenges. This study investigates the impact of three signal denoising techniques' Discrete Wavelet Transform(DWT), Discrete Fourier Transform(DFT), and Discrete Cosine Transform (DCT) Non EEG signal classification performance. The motivation behind this study is to identify the most effective preprocessing method for enhancing deep learning model performance in this domain. A novel DWT-CNN-BiGRU model is proposed, which leverages CNN layers for spatial feature extraction and BiGRU layers for capturing temporal dependencies. Experimental results show that the DWT-based approach, combined with standard scaling, achieves the highest accuracy of 94%, with a precision of 0.94, a recall of 0.95, and an F1-score of 0.94. Compared to the baseline DWT-CNN-BiLSTM model, the proposed method provides a modest yet meaningful improvement of approximately 17% in classification accuracy. These findings highlight the superiority of DWT as a preprocessing method and validate the proposed model's effectiveness for EEG-based classification, contributing to the development of more reliable medical diagnostic tools.
ISSN:1662-5196