Infinite volume and atoms at the bottom of the spectrum
Let $G$ be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and $X$ the associated Riemannian symmetric space. For any Zariski dense discrete subgroup $\Gamma
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-12-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206134305193984 |
---|---|
author | Edwards, Sam Fraczyk, Mikolaj Lee, Minju Oh, Hee |
author_facet | Edwards, Sam Fraczyk, Mikolaj Lee, Minju Oh, Hee |
author_sort | Edwards, Sam |
collection | DOAJ |
description | Let $G$ be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and $X$ the associated Riemannian symmetric space. For any Zariski dense discrete subgroup $\Gamma |
format | Article |
id | doaj-art-16071b3488c24e7b97b630479e3a9148 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-12-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-16071b3488c24e7b97b630479e3a91482025-02-07T11:27:00ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-12-01362G131873188010.5802/crmath.58610.5802/crmath.586Infinite volume and atoms at the bottom of the spectrumEdwards, Sam0Fraczyk, Mikolaj1Lee, Minju2Oh, Hee3Department of Mathematical Sciences, Durham University, Lower Mountjoy, DH1 3LE Durham, United KingdomFaculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland; Mathematics department, University of Chicago, Chicago, IL 60637, USAMathematics department, University of Chicago, Chicago, IL 60637, USAMathematics department, Yale university, New Haven, CT 06520, USALet $G$ be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and $X$ the associated Riemannian symmetric space. For any Zariski dense discrete subgroup $\Gamma https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/Laplace eigenfunctionlocally symmetric manifoldsinfinite volumePatterson–Sullivan measure |
spellingShingle | Edwards, Sam Fraczyk, Mikolaj Lee, Minju Oh, Hee Infinite volume and atoms at the bottom of the spectrum Comptes Rendus. Mathématique Laplace eigenfunction locally symmetric manifolds infinite volume Patterson–Sullivan measure |
title | Infinite volume and atoms at the bottom of the spectrum |
title_full | Infinite volume and atoms at the bottom of the spectrum |
title_fullStr | Infinite volume and atoms at the bottom of the spectrum |
title_full_unstemmed | Infinite volume and atoms at the bottom of the spectrum |
title_short | Infinite volume and atoms at the bottom of the spectrum |
title_sort | infinite volume and atoms at the bottom of the spectrum |
topic | Laplace eigenfunction locally symmetric manifolds infinite volume Patterson–Sullivan measure |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/ |
work_keys_str_mv | AT edwardssam infinitevolumeandatomsatthebottomofthespectrum AT fraczykmikolaj infinitevolumeandatomsatthebottomofthespectrum AT leeminju infinitevolumeandatomsatthebottomofthespectrum AT ohhee infinitevolumeandatomsatthebottomofthespectrum |