Infinite volume and atoms at the bottom of the spectrum

Let $G$ be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and $X$ the associated Riemannian symmetric space. For any Zariski dense discrete subgroup $\Gamma

Saved in:
Bibliographic Details
Main Authors: Edwards, Sam, Fraczyk, Mikolaj, Lee, Minju, Oh, Hee
Format: Article
Language:English
Published: Académie des sciences 2024-12-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206134305193984
author Edwards, Sam
Fraczyk, Mikolaj
Lee, Minju
Oh, Hee
author_facet Edwards, Sam
Fraczyk, Mikolaj
Lee, Minju
Oh, Hee
author_sort Edwards, Sam
collection DOAJ
description Let $G$ be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and $X$ the associated Riemannian symmetric space. For any Zariski dense discrete subgroup $\Gamma
format Article
id doaj-art-16071b3488c24e7b97b630479e3a9148
institution Kabale University
issn 1778-3569
language English
publishDate 2024-12-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-16071b3488c24e7b97b630479e3a91482025-02-07T11:27:00ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-12-01362G131873188010.5802/crmath.58610.5802/crmath.586Infinite volume and atoms at the bottom of the spectrumEdwards, Sam0Fraczyk, Mikolaj1Lee, Minju2Oh, Hee3Department of Mathematical Sciences, Durham University, Lower Mountjoy, DH1 3LE Durham, United KingdomFaculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland; Mathematics department, University of Chicago, Chicago, IL 60637, USAMathematics department, University of Chicago, Chicago, IL 60637, USAMathematics department, Yale university, New Haven, CT 06520, USALet $G$ be a higher rank simple real algebraic group, or more generally, any semisimple real algebraic group with no rank one factors and $X$ the associated Riemannian symmetric space. For any Zariski dense discrete subgroup $\Gamma https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/Laplace eigenfunctionlocally symmetric manifoldsinfinite volumePatterson–Sullivan measure
spellingShingle Edwards, Sam
Fraczyk, Mikolaj
Lee, Minju
Oh, Hee
Infinite volume and atoms at the bottom of the spectrum
Comptes Rendus. Mathématique
Laplace eigenfunction
locally symmetric manifolds
infinite volume
Patterson–Sullivan measure
title Infinite volume and atoms at the bottom of the spectrum
title_full Infinite volume and atoms at the bottom of the spectrum
title_fullStr Infinite volume and atoms at the bottom of the spectrum
title_full_unstemmed Infinite volume and atoms at the bottom of the spectrum
title_short Infinite volume and atoms at the bottom of the spectrum
title_sort infinite volume and atoms at the bottom of the spectrum
topic Laplace eigenfunction
locally symmetric manifolds
infinite volume
Patterson–Sullivan measure
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.586/
work_keys_str_mv AT edwardssam infinitevolumeandatomsatthebottomofthespectrum
AT fraczykmikolaj infinitevolumeandatomsatthebottomofthespectrum
AT leeminju infinitevolumeandatomsatthebottomofthespectrum
AT ohhee infinitevolumeandatomsatthebottomofthespectrum