On the Yang-Mills Propagator at Strong Coupling

About twelve years ago, the use of standard functional manipulations was demonstrated to imply an unexpected property satisfied by the fermionic Green’s functions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><...

Full description

Saved in:
Bibliographic Details
Main Authors: Yves Gabellini, Thierry Grandou, Ralf Hofmann
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/11/2/56
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850078008945147904
author Yves Gabellini
Thierry Grandou
Ralf Hofmann
author_facet Yves Gabellini
Thierry Grandou
Ralf Hofmann
author_sort Yves Gabellini
collection DOAJ
description About twelve years ago, the use of standard functional manipulations was demonstrated to imply an unexpected property satisfied by the fermionic Green’s functions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mi>C</mi><mi>D</mi></mrow></semantics></math></inline-formula>. This non-perturbative phenomenon has been dubbed an <i>effective locality</i>. In a much simpler way than in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mi>C</mi><mi>D</mi></mrow></semantics></math></inline-formula>, the most remarkable and intriguing aspects of effective locality have been presented in a recent publication on the Yang-Mills theory on Minkowski spacetime. While quickly recalled in the current paper, these results are used to calculate the problematic gluonic propagator in the Yang-Mills non-perturbative regime. This paper is dedicated to the memory of Professor Herbert M. Fried (1929–2023), whose inspiring manner, impressive command of functional methods in quantum field theories, enthusiasm for a broad range of topics in Theoretical Physics, and warm friendship are missed greatly by the authors.
format Article
id doaj-art-15f9f08fc33b4f2da120f6403916e41b
institution DOAJ
issn 2218-1997
language English
publishDate 2025-02-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj-art-15f9f08fc33b4f2da120f6403916e41b2025-08-20T02:45:41ZengMDPI AGUniverse2218-19972025-02-011125610.3390/universe11020056On the Yang-Mills Propagator at Strong CouplingYves Gabellini0Thierry Grandou1Ralf Hofmann2Institut de Physique de Nice, UMR 7010, Université Côte d’Azur–CNRS, 17 rue Julien Lauprêtre, 06200 Nice, FranceInstitut de Physique de Nice, UMR 7010, Université Côte d’Azur–CNRS, 17 rue Julien Lauprêtre, 06200 Nice, FranceInstitut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, GermanyAbout twelve years ago, the use of standard functional manipulations was demonstrated to imply an unexpected property satisfied by the fermionic Green’s functions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mi>C</mi><mi>D</mi></mrow></semantics></math></inline-formula>. This non-perturbative phenomenon has been dubbed an <i>effective locality</i>. In a much simpler way than in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mi>C</mi><mi>D</mi></mrow></semantics></math></inline-formula>, the most remarkable and intriguing aspects of effective locality have been presented in a recent publication on the Yang-Mills theory on Minkowski spacetime. While quickly recalled in the current paper, these results are used to calculate the problematic gluonic propagator in the Yang-Mills non-perturbative regime. This paper is dedicated to the memory of Professor Herbert M. Fried (1929–2023), whose inspiring manner, impressive command of functional methods in quantum field theories, enthusiasm for a broad range of topics in Theoretical Physics, and warm friendship are missed greatly by the authors.https://www.mdpi.com/2218-1997/11/2/56Yang–Millsfunctional methodseffective localityrandom matrix theory
spellingShingle Yves Gabellini
Thierry Grandou
Ralf Hofmann
On the Yang-Mills Propagator at Strong Coupling
Universe
Yang–Mills
functional methods
effective locality
random matrix theory
title On the Yang-Mills Propagator at Strong Coupling
title_full On the Yang-Mills Propagator at Strong Coupling
title_fullStr On the Yang-Mills Propagator at Strong Coupling
title_full_unstemmed On the Yang-Mills Propagator at Strong Coupling
title_short On the Yang-Mills Propagator at Strong Coupling
title_sort on the yang mills propagator at strong coupling
topic Yang–Mills
functional methods
effective locality
random matrix theory
url https://www.mdpi.com/2218-1997/11/2/56
work_keys_str_mv AT yvesgabellini ontheyangmillspropagatoratstrongcoupling
AT thierrygrandou ontheyangmillspropagatoratstrongcoupling
AT ralfhofmann ontheyangmillspropagatoratstrongcoupling