On the Yang-Mills Propagator at Strong Coupling
About twelve years ago, the use of standard functional manipulations was demonstrated to imply an unexpected property satisfied by the fermionic Green’s functions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Universe |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2218-1997/11/2/56 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850078008945147904 |
|---|---|
| author | Yves Gabellini Thierry Grandou Ralf Hofmann |
| author_facet | Yves Gabellini Thierry Grandou Ralf Hofmann |
| author_sort | Yves Gabellini |
| collection | DOAJ |
| description | About twelve years ago, the use of standard functional manipulations was demonstrated to imply an unexpected property satisfied by the fermionic Green’s functions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mi>C</mi><mi>D</mi></mrow></semantics></math></inline-formula>. This non-perturbative phenomenon has been dubbed an <i>effective locality</i>. In a much simpler way than in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mi>C</mi><mi>D</mi></mrow></semantics></math></inline-formula>, the most remarkable and intriguing aspects of effective locality have been presented in a recent publication on the Yang-Mills theory on Minkowski spacetime. While quickly recalled in the current paper, these results are used to calculate the problematic gluonic propagator in the Yang-Mills non-perturbative regime. This paper is dedicated to the memory of Professor Herbert M. Fried (1929–2023), whose inspiring manner, impressive command of functional methods in quantum field theories, enthusiasm for a broad range of topics in Theoretical Physics, and warm friendship are missed greatly by the authors. |
| format | Article |
| id | doaj-art-15f9f08fc33b4f2da120f6403916e41b |
| institution | DOAJ |
| issn | 2218-1997 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Universe |
| spelling | doaj-art-15f9f08fc33b4f2da120f6403916e41b2025-08-20T02:45:41ZengMDPI AGUniverse2218-19972025-02-011125610.3390/universe11020056On the Yang-Mills Propagator at Strong CouplingYves Gabellini0Thierry Grandou1Ralf Hofmann2Institut de Physique de Nice, UMR 7010, Université Côte d’Azur–CNRS, 17 rue Julien Lauprêtre, 06200 Nice, FranceInstitut de Physique de Nice, UMR 7010, Université Côte d’Azur–CNRS, 17 rue Julien Lauprêtre, 06200 Nice, FranceInstitut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, GermanyAbout twelve years ago, the use of standard functional manipulations was demonstrated to imply an unexpected property satisfied by the fermionic Green’s functions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mi>C</mi><mi>D</mi></mrow></semantics></math></inline-formula>. This non-perturbative phenomenon has been dubbed an <i>effective locality</i>. In a much simpler way than in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mi>C</mi><mi>D</mi></mrow></semantics></math></inline-formula>, the most remarkable and intriguing aspects of effective locality have been presented in a recent publication on the Yang-Mills theory on Minkowski spacetime. While quickly recalled in the current paper, these results are used to calculate the problematic gluonic propagator in the Yang-Mills non-perturbative regime. This paper is dedicated to the memory of Professor Herbert M. Fried (1929–2023), whose inspiring manner, impressive command of functional methods in quantum field theories, enthusiasm for a broad range of topics in Theoretical Physics, and warm friendship are missed greatly by the authors.https://www.mdpi.com/2218-1997/11/2/56Yang–Millsfunctional methodseffective localityrandom matrix theory |
| spellingShingle | Yves Gabellini Thierry Grandou Ralf Hofmann On the Yang-Mills Propagator at Strong Coupling Universe Yang–Mills functional methods effective locality random matrix theory |
| title | On the Yang-Mills Propagator at Strong Coupling |
| title_full | On the Yang-Mills Propagator at Strong Coupling |
| title_fullStr | On the Yang-Mills Propagator at Strong Coupling |
| title_full_unstemmed | On the Yang-Mills Propagator at Strong Coupling |
| title_short | On the Yang-Mills Propagator at Strong Coupling |
| title_sort | on the yang mills propagator at strong coupling |
| topic | Yang–Mills functional methods effective locality random matrix theory |
| url | https://www.mdpi.com/2218-1997/11/2/56 |
| work_keys_str_mv | AT yvesgabellini ontheyangmillspropagatoratstrongcoupling AT thierrygrandou ontheyangmillspropagatoratstrongcoupling AT ralfhofmann ontheyangmillspropagatoratstrongcoupling |