The Property of Hamiltonian Connectedness in Toeplitz Graphs
A spanning path in a graph G is called a Hamiltonian path. To determine which graphs possess such paths is an NP-complete problem. A graph G is called Hamiltonian-connected if any two vertices of G are connected by a Hamiltonian path. We consider here the family of Toeplitz graphs. About them, it is...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2020/5608720 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A spanning path in a graph G is called a Hamiltonian path. To determine which graphs possess such paths is an NP-complete problem. A graph G is called Hamiltonian-connected if any two vertices of G are connected by a Hamiltonian path. We consider here the family of Toeplitz graphs. About them, it is known only for n=3 that Tnp,q is Hamiltonian-connected, while some particular cases of Tnp,q,r for p=1 and q=2,3,4 have also been investigated regarding Hamiltonian connectedness. Here, we prove that the nonbipartite Toeplitz graph Tn1,q,r is Hamiltonian-connected for all 1<q<r<n and n≥5r−2. |
|---|---|
| ISSN: | 1076-2787 1099-0526 |