Use of artificial intelligence to assess genetic predisposition to develop critical COVID-19 disease: a comparative study of machine learning models

Early prediction of critical COVID-19 disease is crucial for an optimal clinical management. The objective of this study was to optimize predictive models for critical COVID-19 disease. Clinical data, laboratory data and genetic polymorphisms were integrated into AI models to compare the performance...

Full description

Saved in:
Bibliographic Details
Main Authors: Martín Pérez Salomón, Sanchez Jimenez Flora, Fuentes Cantero Sandra, Jímenez Barragan Marta, Sanchez Mora Catalina, Borreguero Leon Juan M., Teresa Arrobas Velilla, Valido Morales Agustín, Delgado Torralbo Juan A., León Justel Antonio
Format: Article
Language:English
Published: De Gruyter 2025-05-01
Series:Advances in Laboratory Medicine
Subjects:
Online Access:https://doi.org/10.1515/almed-2025-0073
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850157148115304448
author Martín Pérez Salomón
Sanchez Jimenez Flora
Fuentes Cantero Sandra
Jímenez Barragan Marta
Sanchez Mora Catalina
Borreguero Leon Juan M.
Teresa Arrobas Velilla
Valido Morales Agustín
Delgado Torralbo Juan A.
León Justel Antonio
author_facet Martín Pérez Salomón
Sanchez Jimenez Flora
Fuentes Cantero Sandra
Jímenez Barragan Marta
Sanchez Mora Catalina
Borreguero Leon Juan M.
Teresa Arrobas Velilla
Valido Morales Agustín
Delgado Torralbo Juan A.
León Justel Antonio
author_sort Martín Pérez Salomón
collection DOAJ
description Early prediction of critical COVID-19 disease is crucial for an optimal clinical management. The objective of this study was to optimize predictive models for critical COVID-19 disease. Clinical data, laboratory data and genetic polymorphisms were integrated into AI models to compare the performance of different machine learning algorithms.
format Article
id doaj-art-15dc1428f2804d8e85d509ee69f29f0f
institution OA Journals
issn 2628-491X
language English
publishDate 2025-05-01
publisher De Gruyter
record_format Article
series Advances in Laboratory Medicine
spelling doaj-art-15dc1428f2804d8e85d509ee69f29f0f2025-08-20T02:24:15ZengDe GruyterAdvances in Laboratory Medicine2628-491X2025-05-016218118910.1515/almed-2025-0073Use of artificial intelligence to assess genetic predisposition to develop critical COVID-19 disease: a comparative study of machine learning modelsMartín Pérez Salomón0Sanchez Jimenez Flora1Fuentes Cantero Sandra2Jímenez Barragan Marta3Sanchez Mora Catalina4Borreguero Leon Juan M.5Teresa Arrobas Velilla6Valido Morales Agustín7Delgado Torralbo Juan A.8León Justel Antonio916582Service of Clinical Biochemistry Virgen Macarena University Hospital Seville, Seville, Spain16582Service of Clinical Biochemistry Virgen Macarena University Hospital Seville, Seville, SpainDepartment of Clinical Laboratory Chemistry Rio Tinto General Hospital Huelva, Huelva, Spain16582Service of Clinical Biochemistry Virgen Macarena University Hospital Seville, Seville, Spain16582Service of Clinical Biochemistry Virgen Macarena University Hospital Seville, Seville, Spain16582Service of Clinical Biochemistry Virgen Macarena University Hospital Seville, Seville, Spain16582Service of Clinical Biochemistry Virgen Macarena University Hospital Seville, Seville, SpainUnit of Pulmonology, Virgen Macarena University Hospital Seville, Seville, SpainUnit of Pulmonology, Virgen Macarena University Hospital Seville, Seville, Spain16582Service of Clinical Biochemistry Virgen Macarena University Hospital Seville, Seville, SpainEarly prediction of critical COVID-19 disease is crucial for an optimal clinical management. The objective of this study was to optimize predictive models for critical COVID-19 disease. Clinical data, laboratory data and genetic polymorphisms were integrated into AI models to compare the performance of different machine learning algorithms.https://doi.org/10.1515/almed-2025-0073machine learningcovid-19critical diseaseartificial intelligencegenetic polymorphisms (snps)logistic regression
spellingShingle Martín Pérez Salomón
Sanchez Jimenez Flora
Fuentes Cantero Sandra
Jímenez Barragan Marta
Sanchez Mora Catalina
Borreguero Leon Juan M.
Teresa Arrobas Velilla
Valido Morales Agustín
Delgado Torralbo Juan A.
León Justel Antonio
Use of artificial intelligence to assess genetic predisposition to develop critical COVID-19 disease: a comparative study of machine learning models
Advances in Laboratory Medicine
machine learning
covid-19
critical disease
artificial intelligence
genetic polymorphisms (snps)
logistic regression
title Use of artificial intelligence to assess genetic predisposition to develop critical COVID-19 disease: a comparative study of machine learning models
title_full Use of artificial intelligence to assess genetic predisposition to develop critical COVID-19 disease: a comparative study of machine learning models
title_fullStr Use of artificial intelligence to assess genetic predisposition to develop critical COVID-19 disease: a comparative study of machine learning models
title_full_unstemmed Use of artificial intelligence to assess genetic predisposition to develop critical COVID-19 disease: a comparative study of machine learning models
title_short Use of artificial intelligence to assess genetic predisposition to develop critical COVID-19 disease: a comparative study of machine learning models
title_sort use of artificial intelligence to assess genetic predisposition to develop critical covid 19 disease a comparative study of machine learning models
topic machine learning
covid-19
critical disease
artificial intelligence
genetic polymorphisms (snps)
logistic regression
url https://doi.org/10.1515/almed-2025-0073
work_keys_str_mv AT martinperezsalomon useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT sanchezjimenezflora useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT fuentescanterosandra useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT jimenezbarraganmarta useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT sanchezmoracatalina useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT borregueroleonjuanm useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT teresaarrobasvelilla useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT validomoralesagustin useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT delgadotorralbojuana useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels
AT leonjustelantonio useofartificialintelligencetoassessgeneticpredispositiontodevelopcriticalcovid19diseaseacomparativestudyofmachinelearningmodels