Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate...

Full description

Saved in:
Bibliographic Details
Main Authors: Laith K. Abbas, Dongyang Chen, Xiaoting Rui
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2014/478534
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.
ISSN:1687-5966
1687-5974