Ultrahigh-power-density flexible piezoelectric energy harvester based on freestanding ferroelectric oxide thin films
Abstract Flexible piezoelectric nanogenerators are emerging as a promising solution for powering next-generation flexible electronics by converting mechanical energy into electrical energy. However, traditional ferroelectric ceramics, despite their excellent piezoelectric properties, lack flexibilit...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58386-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Flexible piezoelectric nanogenerators are emerging as a promising solution for powering next-generation flexible electronics by converting mechanical energy into electrical energy. However, traditional ferroelectric ceramics, despite their excellent piezoelectric properties, lack flexibility; while piezoelectric polymers, although highly flexible, have low piezoelectricity. The quest to develop materials that combine high piezoelectricity with exceptional flexibility has thus become a research focus. Herein, we present a breakthrough in this field with the fabrication of freestanding (111)-oriented PbZr0.52Ti0.48O3 single crystalline thin films, which exhibit remarkable flexibility and a high converse piezoelectric coefficient (~585 pm/V). This is achieved through water-soluble sacrificial layer to relieve substrate clamping and controlling the crystal orientation to further enhance the piezoelectric response. Our nanogenerators, constructed using these freestanding nanoscale membranes, demonstrate a record-high output power density (~63.5 mW/cm3), excellent flexibility (with a strain tolerance >3.4%), and superior mechanical stability in cycling tests (>60,000 cycles). These advancements pave the way for high-performance, flexible electronic devices utilizing ferroelectric oxide thin films. |
|---|---|
| ISSN: | 2041-1723 |