Hilbert Algebras with Hilbert-Galois Connections II

Hilbert algebra with a Hilbert-Galois connection, or HilGC-algebra, is a triple \(\left(A,f,g\right)\) where \(A\) is a Hilbert algebra, and \(f\) and \(g\) are unary maps on \(A\) such that \(f(a)\leq b\) iff \(a\leq g(b)\), and \(g(a\rightarrow b)\leq g(a)\rightarrow g(b)\) for all \(a,b\in A\). I...

Full description

Saved in:
Bibliographic Details
Main Authors: Sergio A. Celani, Daniela Montagie
Format: Article
Language:English
Published: Lodz University Press 2024-12-01
Series:Bulletin of the Section of Logic
Subjects:
Online Access:https://czasopisma.uni.lodz.pl/bulletin/article/view/23268
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206659949002752
author Sergio A. Celani
Daniela Montagie
author_facet Sergio A. Celani
Daniela Montagie
author_sort Sergio A. Celani
collection DOAJ
description Hilbert algebra with a Hilbert-Galois connection, or HilGC-algebra, is a triple \(\left(A,f,g\right)\) where \(A\) is a Hilbert algebra, and \(f\) and \(g\) are unary maps on \(A\) such that \(f(a)\leq b\) iff \(a\leq g(b)\), and \(g(a\rightarrow b)\leq g(a)\rightarrow g(b)\) for all \(a,b\in A\). In this paper, we are going to prove that some varieties of HilGC-algebras are characterized by first-order conditions defined in the dual space and that these varieties are canonical. Additionally, we will also study and characterize the congruences of an HilGC-algebra through specific closed subsets of the dual space. This characterization will be applied to determine the simple algebras and subdirectly irreducible HilGC-algebras.
format Article
id doaj-art-15a31542abf94eb794872959d8955071
institution Kabale University
issn 0138-0680
2449-836X
language English
publishDate 2024-12-01
publisher Lodz University Press
record_format Article
series Bulletin of the Section of Logic
spelling doaj-art-15a31542abf94eb794872959d89550712025-02-07T07:22:47ZengLodz University PressBulletin of the Section of Logic0138-06802449-836X2024-12-0153453555410.18778/0138-0680.2024.1723575Hilbert Algebras with Hilbert-Galois Connections IISergio A. Celani0https://orcid.org/0000-0003-2542-4128Daniela Montagie1https://orcid.org/0000-0001-8832-6715Universidad Nacional del Centro and CONICET, Departamento de Matemática, ArgentinaInstituto de Investigación en Tecnologías y Ciencias de la Ingeniería; Universidad Nacional del Comahue, Facultad de Economía y Administración, Departamento de Matemática, ArgentinaHilbert algebra with a Hilbert-Galois connection, or HilGC-algebra, is a triple \(\left(A,f,g\right)\) where \(A\) is a Hilbert algebra, and \(f\) and \(g\) are unary maps on \(A\) such that \(f(a)\leq b\) iff \(a\leq g(b)\), and \(g(a\rightarrow b)\leq g(a)\rightarrow g(b)\) for all \(a,b\in A\). In this paper, we are going to prove that some varieties of HilGC-algebras are characterized by first-order conditions defined in the dual space and that these varieties are canonical. Additionally, we will also study and characterize the congruences of an HilGC-algebra through specific closed subsets of the dual space. This characterization will be applied to determine the simple algebras and subdirectly irreducible HilGC-algebras.https://czasopisma.uni.lodz.pl/bulletin/article/view/23268hilbert algebramodal operatorsgalois connectioncanonical varietiescongruences
spellingShingle Sergio A. Celani
Daniela Montagie
Hilbert Algebras with Hilbert-Galois Connections II
Bulletin of the Section of Logic
hilbert algebra
modal operators
galois connection
canonical varieties
congruences
title Hilbert Algebras with Hilbert-Galois Connections II
title_full Hilbert Algebras with Hilbert-Galois Connections II
title_fullStr Hilbert Algebras with Hilbert-Galois Connections II
title_full_unstemmed Hilbert Algebras with Hilbert-Galois Connections II
title_short Hilbert Algebras with Hilbert-Galois Connections II
title_sort hilbert algebras with hilbert galois connections ii
topic hilbert algebra
modal operators
galois connection
canonical varieties
congruences
url https://czasopisma.uni.lodz.pl/bulletin/article/view/23268
work_keys_str_mv AT sergioacelani hilbertalgebraswithhilbertgaloisconnectionsii
AT danielamontagie hilbertalgebraswithhilbertgaloisconnectionsii