Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis
The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM) model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to constr...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2013/427213 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM) model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to construct a unique dynamic model in a given rate range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set input signal. Subsequently, a proportional integral derivative (PID) control scheme combined with a feedforward compensation is implemented on a giant magnetostrictive actuator (GMA) for real-time precise trajectory tracking. Simulations and experiments both verify the effectiveness and the practicality of the proposed modeling and control methods. |
|---|---|
| ISSN: | 1110-757X 1687-0042 |