An explainable and federated deep learning framework for skin cancer diagnosis.

Skin cancer (SC) is the most prominent form of cancer in humans, with over 1 million new cases reported worldwide each year. Early identification of SC plays a crucial role in effective treatment. However, protecting patient data privacy is a major concern in medical research. Therefore, this study...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuvo Biswas, Sajeeb Saha, Muhammad Shahin Uddin, Rafid Mostafiz
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0324393
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Skin cancer (SC) is the most prominent form of cancer in humans, with over 1 million new cases reported worldwide each year. Early identification of SC plays a crucial role in effective treatment. However, protecting patient data privacy is a major concern in medical research. Therefore, this study presents a smart framework for classifying SC leveraging deep learning (DL), federated learning (FL) and explainable AI (XAI). We tested the presented framework on two well-known datasets, ISBI2016 and ISBI2017. The data was first preprocessed by several techniques: resizing, normalization, balancing, and augmentation. Six advanced DL algorithms-VGG16, Xception, DenseNet169, InceptionV3, MobileViT, and InceptionResNetV2-were applied for classification tasks. Among these, the DenseNet169 algorithm obtained the highest accuracy of 83.3% in ISBI2016 and 92.67% in ISBI2017. All models were then tested in an FL platform to maintain data privacy. In the FL platform, the VGG16 algorithm showed the best results, with 92.08% accuracy on ISBI2016 and 94% on ISBI2017. To ensure model interpretability, an XAI-based algorithm named Local Interpretable Model-Agnostic Explanations (LIME) was used to explain the predictions of the proposed framework. We believe the proposed framework offers a dependable tool for SC diagnosis while protecting sensitive medical data.
ISSN:1932-6203