Preparation of Biodegradable Reduced Graphene Oxide/Agar Composites by In Situ Reduction of Graphene Oxide
Plastics are ubiquitous in our daily life. However, the use of petrochemical-based plastic as packaging materials causes the depletion of non-renewable resources, thereby leading to an increase in oil prices and economic crises. Moreover, these petrochemical plastics raise the issue of environmental...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2023-01-01
|
| Series: | International Journal of Polymer Science |
| Online Access: | http://dx.doi.org/10.1155/2023/4583522 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Plastics are ubiquitous in our daily life. However, the use of petrochemical-based plastic as packaging materials causes the depletion of non-renewable resources, thereby leading to an increase in oil prices and economic crises. Moreover, these petrochemical plastics raise the issue of environmental pollution due to their non-biodegradability. Owing to this, there is a need to develop an alternative biodegradable and eco-friendly packing material. Agar, which is extracted from seaweeds, is one of the abundantly available polymers. However, moderate tensile strength and thermal stability restrict its application. As a step forward, agar/reduced graphene oxide (RGO) composites were prepared by in situ reduction of GO in the polymer matrix. The tensile strength of the composite was found to increase by 55% at 2% RGO loading. The electrical conductivity and thermal properties of the composite were also improved. The presence of conductivity suggested that apart from packaging, agar/RGO composites can also have potential applications as capacitor plates creating a supercapacitor and as electric field-induced wound healing material. |
|---|---|
| ISSN: | 1687-9430 |