Estimating Subsurface Geostatistical Properties from GPR Reflection Data Using a Supervised Deep Learning Approach

The quantitative characterization of near-surface heterogeneity using ground-penetrating radar (GPR) is an important but challenging task. The estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion a...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Liu, James Irving, Klaus Holliger
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/13/2284
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The quantitative characterization of near-surface heterogeneity using ground-penetrating radar (GPR) is an important but challenging task. The estimation of subsurface geostatistical parameters from surface-based common-offset GPR reflection data has so far relied upon a Monte-Carlo-type inversion approach. This allows for a comprehensive exploration of the parameter space and provides some measure of uncertainty with regard to the inferred results. However, the associated computational costs are inherently high. To alleviate this problem, we present an alternative deep-learning-based technique, that, once trained in a supervised context, allows us to perform the same task in a highly efficient manner. The proposed approach uses a convolutional neural network (CNN), which is trained on a vast database of autocorrelations obtained from synthetic GPR images for a comprehensive range of stochastic subsurface models. An important aspect of the training process is that the synthetic GPR data are generated using a computationally efficient approximate solution of the underlying physical problem. This strategy effectively addresses the notorious challenge of insufficient training data, which frequently impedes the application of deep-learning-based methods in applied geophysics. Tests on a wide range of realistic synthetic GPR data generated using a finite-difference time-domain (FDTD) solution of Maxwell’s equations, as well as a comparison with the results of the traditional Monte Carlo approach on a pertinent field dataset, confirm the viability of the proposed method, even in the presence of significant levels of data noise. Our results also demonstrate that typical mismatches between the dominant frequencies of the analyzed and training data can be readily alleviated through simple spectral shifting.
ISSN:2072-4292