Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

Microbial-induced calcite precipitation (MICP) is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages...

Full description

Saved in:
Bibliographic Details
Main Authors: Guobin Xu, Yang Tang, Jijian Lian, Yue Yan, Dengfeng Fu
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2017/5301385
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbial-induced calcite precipitation (MICP) is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.
ISSN:1687-8434
1687-8442