Generalized derivations with power values on rings and Banach algebras

Let $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following id...

Full description

Saved in:
Bibliographic Details
Main Authors: Abderrahman Hermas, Abdellah Mamouni, Lahcen Oukhtite
Format: Article
Language:English
Published: Institute of Mathematics of the Czech Academy of Science 2024-12-01
Series:Mathematica Bohemica
Subjects:
Online Access:https://mb.math.cas.cz/full/149/4/mb149_4_3.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850175025896751104
author Abderrahman Hermas
Abdellah Mamouni
Lahcen Oukhtite
author_facet Abderrahman Hermas
Abdellah Mamouni
Lahcen Oukhtite
author_sort Abderrahman Hermas
collection DOAJ
description Let $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following identities: \begin{itemize} \item[(1)] $aF(x)^mH(y)^m=x^ny^n$ for all $x,y \in I,$ \item[(2)] $ (F(x)\circ H(y))^m=(x\circ y)^n$ for all $x,y \in I,$ \end{itemize} for two fixed positive integers $m\geq1$, $n\geq1$ and $a$ an element of the extended centroid of $R$. Finally, as an application, the same identities are studied locally on nonvoid open subsets of a prime Banach algebra.
format Article
id doaj-art-1521761c1d394826b001095683a0eeea
institution OA Journals
issn 0862-7959
2464-7136
language English
publishDate 2024-12-01
publisher Institute of Mathematics of the Czech Academy of Science
record_format Article
series Mathematica Bohemica
spelling doaj-art-1521761c1d394826b001095683a0eeea2025-08-20T02:19:33ZengInstitute of Mathematics of the Czech Academy of ScienceMathematica Bohemica0862-79592464-71362024-12-01149449150210.21136/MB.2024.0079-23MB.2024.0079-23Generalized derivations with power values on rings and Banach algebrasAbderrahman HermasAbdellah MamouniLahcen OukhtiteLet $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following identities: \begin{itemize} \item[(1)] $aF(x)^mH(y)^m=x^ny^n$ for all $x,y \in I,$ \item[(2)] $ (F(x)\circ H(y))^m=(x\circ y)^n$ for all $x,y \in I,$ \end{itemize} for two fixed positive integers $m\geq1$, $n\geq1$ and $a$ an element of the extended centroid of $R$. Finally, as an application, the same identities are studied locally on nonvoid open subsets of a prime Banach algebra.https://mb.math.cas.cz/full/149/4/mb149_4_3.pdf prime ring generalized derivation banach algebra jacobson radical
spellingShingle Abderrahman Hermas
Abdellah Mamouni
Lahcen Oukhtite
Generalized derivations with power values on rings and Banach algebras
Mathematica Bohemica
prime ring
generalized derivation
banach algebra
jacobson radical
title Generalized derivations with power values on rings and Banach algebras
title_full Generalized derivations with power values on rings and Banach algebras
title_fullStr Generalized derivations with power values on rings and Banach algebras
title_full_unstemmed Generalized derivations with power values on rings and Banach algebras
title_short Generalized derivations with power values on rings and Banach algebras
title_sort generalized derivations with power values on rings and banach algebras
topic prime ring
generalized derivation
banach algebra
jacobson radical
url https://mb.math.cas.cz/full/149/4/mb149_4_3.pdf
work_keys_str_mv AT abderrahmanhermas generalizedderivationswithpowervaluesonringsandbanachalgebras
AT abdellahmamouni generalizedderivationswithpowervaluesonringsandbanachalgebras
AT lahcenoukhtite generalizedderivationswithpowervaluesonringsandbanachalgebras