Improving accuracy for inferior alveolar nerve segmentation with multi-label of anatomical adjacent structures using active learning in cone-beam computed tomography
Abstract Recent advancements in deep learning have revolutionized digital dentistry, highlighting the importance of precise dental segmentation. This study leverages active learning with the three-dimensional (3D) nnU-net and multi-labels to improve segmentation accuracy of dental anatomies, includi...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-91725-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Recent advancements in deep learning have revolutionized digital dentistry, highlighting the importance of precise dental segmentation. This study leverages active learning with the three-dimensional (3D) nnU-net and multi-labels to improve segmentation accuracy of dental anatomies, including the maxillary sinuses, maxilla, mandible, and inferior alveolar nerves (IAN), which are important for implant planning, in 3D cone-beam computed tomography (CBCT) scans. Segmentation accuracy was compared using single-label, adjacent pair-label, and multi-label relevant anatomic structures with 60 CBCT scans from Kooalldam Dental Hospital and externally validated using data from Seoul National University Dental Hospital. The dataset was divided into three training stages for active learning. The evaluation metrics were assessed through the Dice similarity coefficient (DSC) and mean absolute difference. The overall internal test set DSCs from the multi-label, single-label, and pair-label models were 95%, 91% (paired t-test; p = 0.01), and 93% (p = 0.03), respectively. The DSC of the IAN in the internal and external datasets increased from 83% to 79%, 87% and 81%, to 90% and 86% for the single-label, pair-label, and multi-label models, respectively (all p = 0.01). Prediction accuracy improved over time, significantly reducing the manual correction time. Our active learning and multi-label strategies facilitated accurate automatic segmentation. |
|---|---|
| ISSN: | 2045-2322 |