Assessing the Risk of Natural and Socioeconomic Hazards Caused by Rainfall in the Middle Yellow River Basin
Extreme rainfall events directly increase flood risks and further trigger environmental geological hazards (i.e., landslides and debris flows). Meanwhile, rainfall-induced risks are determined by climate and geographical factors and spatial socioeconomic factors (e.g., population density and gross d...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Hydrology |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5338/12/6/134 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Extreme rainfall events directly increase flood risks and further trigger environmental geological hazards (i.e., landslides and debris flows). Meanwhile, rainfall-induced risks are determined by climate and geographical factors and spatial socioeconomic factors (e.g., population density and gross domestic product). However, the middle stream of Yellow River Basin, where geological hazards frequently occur, lacks systematic analyses of rainfall-induced risks. In this study, we propose a comprehensive quantification framework and apply it to the Loess Plateau of northern China based on 40 years of climate data, streamflow measurements, and multiple spatial and geographical attribute datasets. A deep learning algorithm of long short-term memory (LSTM) was used to predict runoff, and the analytic hierarchy index was utilized to evaluate the comprehensive spatial risk considering natural and socioeconomic factors. Despite a decrease in annual precipitation in our study area of 1.46 mm per year, the intensity of heavy rainfall has increased since the 1980s, characterized by increases in rainstorm intensity (+4.68%), rainfall intensity (+7.07%), and rainfall amount (+5.34%). A comprehensive risk assessment indicated that high-risk areas accounted for 20.30% of the total area, with rainfall, geographical factors, and socioeconomic variables accounting for 53.90%, 29.72%, and 16.38% of risk areas, respectively. Rainfall was the dominant factor that determined the risk, and geographical and socioeconomic properties characterized the vulnerability and resilience of disasters. Our study provided an evaluation framework for multi-hazard risk assessment and insights for the development of disaster prevention and reduction policies. |
|---|---|
| ISSN: | 2306-5338 |