Spatiotemporal Dynamics and Driving Factors of Soil Wind Erosion in Inner Mongolia, China
Wind erosion poses a major threat to ecosystem stability and land productivity in arid and semi-arid regions. Accurate identification of its spatiotemporal dynamics and underlying driving mechanisms is a critical prerequisite for effective risk forecasting and targeted erosion control. This study ap...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/14/2365 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Wind erosion poses a major threat to ecosystem stability and land productivity in arid and semi-arid regions. Accurate identification of its spatiotemporal dynamics and underlying driving mechanisms is a critical prerequisite for effective risk forecasting and targeted erosion control. This study applied the Revised Wind Erosion Equation (RWEQ) model to assess the spatial distribution, interannual variation, and seasonal dynamics of the Soil Wind Erosion Modulus (SWEM) across Inner Mongolia from 1990 to 2022. The GeoDetector model was further employed to quantify dominant drivers, key interactions, and high-risk zones via factor, interaction, and risk detection. The results showed that the average SWEM across the study period was 35.65 t·ha<sup>−1</sup>·yr<sup>−1</sup> and showed a decreasing trend over time. However, localised increases were observed in the Horqin and Hulun Buir sandy lands and central grasslands. Wind erosion was most intense in spring (17.64 t·ha<sup>−1</sup>·yr<sup>−1</sup>) and weakest in summer (5.57 t·ha<sup>−1</sup>·yr<sup>−1</sup>). Gale days, NDVI, precipitation, and wind speed were identified as dominant drivers. Interaction detection revealed non-linear synergies between gale days and temperature (q = 0.40) and wind speed and temperature (q = 0.36), alongside a two-factor interaction between NDVI and precipitation (q = 0.19). Risk detection indicated that areas with gale days > 58, wind speed > 3.01 m/s, NDVI < 0.2, precipitation of 30.17–135.59 mm, and temperatures of 3.01–4.23 °C are highly erosion-prone. Management should prioritise these sensitive and intensifying areas by implementing site-specific strategies to enhance ecosystem resilience. |
|---|---|
| ISSN: | 2072-4292 |