Using machine learning to identify relevant features for the diagnosis of chronic back pain

Saved in:
Bibliographic Details
Main Authors: S. Vickery, F. Junker, R. Döding, D. Belavy, M. Angelova, C. Karmakar, L.A. Becker, N. Taheri, M. Pumberger, S. Reitmaier, H. Schmidt
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:Brain and Spine
Online Access:http://www.sciencedirect.com/science/article/pii/S2772529424013754
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850220741659721728
author S. Vickery
F. Junker
R. Döding
D. Belavy
M. Angelova
C. Karmakar
L.A. Becker
N. Taheri
M. Pumberger
S. Reitmaier
H. Schmidt
author_facet S. Vickery
F. Junker
R. Döding
D. Belavy
M. Angelova
C. Karmakar
L.A. Becker
N. Taheri
M. Pumberger
S. Reitmaier
H. Schmidt
author_sort S. Vickery
collection DOAJ
format Article
id doaj-art-14ca0107eef54a2aa756732b1e76051a
institution OA Journals
issn 2772-5294
language English
publishDate 2024-01-01
publisher Elsevier
record_format Article
series Brain and Spine
spelling doaj-art-14ca0107eef54a2aa756732b1e76051a2025-08-20T02:06:57ZengElsevierBrain and Spine2772-52942024-01-01410411910.1016/j.bas.2024.104119Using machine learning to identify relevant features for the diagnosis of chronic back painS. Vickery0F. Junker1R. Döding2D. Belavy3M. Angelova4C. Karmakar5L.A. Becker6N. Taheri7M. Pumberger8S. Reitmaier9H. Schmidt10Hochschule für Gesundheit, Department für Angewandte Gesundheitswissenschaften, Bochum, DeutschlandHochschule für Gesundheit, Department für Angewandte Gesundheitswissenschaften, Bochum, DeutschlandHochschule für Gesundheit, Department für Angewandte Gesundheitswissenschaften, Bochum, DeutschlandHochschule für Gesundheit, Department für Angewandte Gesundheitswissenschaften, Bochum, DeutschlandAston University, Aston Digital Futures Institute, Birmingham, Vereinigtes KönigreichDeakin University, School of Information Technology, Melbourne, AustralienCharité – Universitätsmedizin Berlin, Centrum für Muskuloskeletale Chirurgie, Berlin, Deutschland; Charité – Universitätsmedizin Berlin, Julius Wolff Institut, Berlin Institute of Health, Berlin, DeutschlandCharité – Universitätsmedizin Berlin, Centrum für Muskuloskeletale Chirurgie, Berlin, Deutschland; Charité – Universitätsmedizin Berlin, Julius Wolff Institut, Berlin Institute of Health, Berlin, DeutschlandCharité – Universitätsmedizin Berlin, Centrum für Muskuloskeletale Chirurgie, Berlin, DeutschlandCharité – Universitätsmedizin Berlin, Julius Wolff Institut, Berlin Institute of Health, Berlin, DeutschlandCharité – Universitätsmedizin Berlin, Julius Wolff Institut, Berlin Institute of Health, Berlin, Deutschlandhttp://www.sciencedirect.com/science/article/pii/S2772529424013754
spellingShingle S. Vickery
F. Junker
R. Döding
D. Belavy
M. Angelova
C. Karmakar
L.A. Becker
N. Taheri
M. Pumberger
S. Reitmaier
H. Schmidt
Using machine learning to identify relevant features for the diagnosis of chronic back pain
Brain and Spine
title Using machine learning to identify relevant features for the diagnosis of chronic back pain
title_full Using machine learning to identify relevant features for the diagnosis of chronic back pain
title_fullStr Using machine learning to identify relevant features for the diagnosis of chronic back pain
title_full_unstemmed Using machine learning to identify relevant features for the diagnosis of chronic back pain
title_short Using machine learning to identify relevant features for the diagnosis of chronic back pain
title_sort using machine learning to identify relevant features for the diagnosis of chronic back pain
url http://www.sciencedirect.com/science/article/pii/S2772529424013754
work_keys_str_mv AT svickery usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT fjunker usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT rdoding usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT dbelavy usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT mangelova usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT ckarmakar usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT labecker usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT ntaheri usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT mpumberger usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT sreitmaier usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain
AT hschmidt usingmachinelearningtoidentifyrelevantfeaturesforthediagnosisofchronicbackpain