D-orbital Reconstruction Achieves Low Charge Overpotential in Li-oxygen Batteries
Abstract Charge overpotential for oxygen evolution reaction is a crucial parameter for the energy conversion efficiency of lithium-oxygen (Li-O2) batteries. So far, the realization of low charge overpotential via catalyst design is a grand challenge in this field, which usually exceeds 0.25 V. Herei...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58640-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Charge overpotential for oxygen evolution reaction is a crucial parameter for the energy conversion efficiency of lithium-oxygen (Li-O2) batteries. So far, the realization of low charge overpotential via catalyst design is a grand challenge in this field, which usually exceeds 0.25 V. Herein, we report an orbital reconstruction strategy to significantly decrease the charge overpotential to the low 0.11 V by employing PdCo nanosheet catalyst under a low-loading mass (0.3 mg/cm2) and capacity (0.3 mAh/cm2). Experimental and theoretical calculations demonstrate that the precise d-d orbital coupling (d xz-d xz, d yz-d yz and d z 2-d z 2) between the low-electronegativity Co and Pd leads to the reconstruction of Pd 4 d orbitals in PdCo nanosheets, thereby resulting in a downward shift of all the three active Pd 4 d orbitals (d z 2, d xz and d yz) relative to that of Pd nanosheets. Furthermore, the highest energy level of the Pd 4d z 2 orbital in PdCo is lower than the lowest energy levels of the Pd 4d xz and 4d yz orbitals in pure Pd, significantly decreasing the charge activation energy and achieving a highest energy conversion efficiency of 91%. This finding provides the orbital-level tuning into rational design of highly efficient electrocatalysts for Li-O2 batteries. |
|---|---|
| ISSN: | 2041-1723 |