Orthogonalizing q-Bernoulli polynomials

In this study, we utilize the Gram-Schmidt orthogonalization method to construct a new set of orthogonal polynomials called OBn(x,q){{\rm{OB}}}_{n}(x,q) from the q-Bernoulli polynomials. We demonstrate the relationship between polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q) and the little q-Legendre polyno...

Full description

Saved in:
Bibliographic Details
Main Authors: Kuş Semra, Tuglu Naim
Format: Article
Language:English
Published: De Gruyter 2025-06-01
Series:Demonstratio Mathematica
Subjects:
Online Access:https://doi.org/10.1515/dema-2025-0133
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849471406626045952
author Kuş Semra
Tuglu Naim
author_facet Kuş Semra
Tuglu Naim
author_sort Kuş Semra
collection DOAJ
description In this study, we utilize the Gram-Schmidt orthogonalization method to construct a new set of orthogonal polynomials called OBn(x,q){{\rm{OB}}}_{n}(x,q) from the q-Bernoulli polynomials. We demonstrate the relationship between polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q) and the little q-Legendre polynomials, and derive a generalized formula for OBn(x,q){{\rm{OB}}}_{n}(x,q) by leveraging the little q-Legendre polynomials. Furthermore, we present some properties of polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q). Finally, we introduce a hybrid of block-pulse function and orthogonal polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q) and examine various properties of these polynomials.
format Article
id doaj-art-14b4439bc6fa40d1b012a4e5826ff1bd
institution Kabale University
issn 2391-4661
language English
publishDate 2025-06-01
publisher De Gruyter
record_format Article
series Demonstratio Mathematica
spelling doaj-art-14b4439bc6fa40d1b012a4e5826ff1bd2025-08-20T03:24:51ZengDe GruyterDemonstratio Mathematica2391-46612025-06-0158191810.1515/dema-2025-0133Orthogonalizing q-Bernoulli polynomialsKuş Semra0Tuglu Naim1Mucur Vocational High School, Kırşehir Ahi Evran University, Kırşehir, TurkeyDepartment of Mathematics, Faculty of Science, Gazi University, Teknikokullar 06500, Ankara, TurkeyIn this study, we utilize the Gram-Schmidt orthogonalization method to construct a new set of orthogonal polynomials called OBn(x,q){{\rm{OB}}}_{n}(x,q) from the q-Bernoulli polynomials. We demonstrate the relationship between polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q) and the little q-Legendre polynomials, and derive a generalized formula for OBn(x,q){{\rm{OB}}}_{n}(x,q) by leveraging the little q-Legendre polynomials. Furthermore, we present some properties of polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q). Finally, we introduce a hybrid of block-pulse function and orthogonal polynomials OBn(x,q){{\rm{OB}}}_{n}(x,q) and examine various properties of these polynomials.https://doi.org/10.1515/dema-2025-0133q-bernoulli polynomialsorthonormal polynomialsblock-pulse functions33c4511b68
spellingShingle Kuş Semra
Tuglu Naim
Orthogonalizing q-Bernoulli polynomials
Demonstratio Mathematica
q-bernoulli polynomials
orthonormal polynomials
block-pulse functions
33c45
11b68
title Orthogonalizing q-Bernoulli polynomials
title_full Orthogonalizing q-Bernoulli polynomials
title_fullStr Orthogonalizing q-Bernoulli polynomials
title_full_unstemmed Orthogonalizing q-Bernoulli polynomials
title_short Orthogonalizing q-Bernoulli polynomials
title_sort orthogonalizing q bernoulli polynomials
topic q-bernoulli polynomials
orthonormal polynomials
block-pulse functions
33c45
11b68
url https://doi.org/10.1515/dema-2025-0133
work_keys_str_mv AT kussemra orthogonalizingqbernoullipolynomials
AT tuglunaim orthogonalizingqbernoullipolynomials