Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RN

We focus on the following elliptic system with critical Sobolev exponents:  -div⁡∇up-2∇u+m(x)up-2u=λup⁎-2u+(1/η)Gu(u,v),  x∈RN; -div⁡∇vq-2∇v+n(x)vq-2v=μvq⁎-2v+(1/η)Gv(u,v),  x∈RN; u(x)>0,v(x)>0,  x∈RN, where μ,λ>0,1<p≤q<N, either η∈(1,p) or η∈(q,p⁎), and critical Sobolev exponents p⁎=...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Li, Caisheng Chen
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2018/6458395
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553728541982720
author Jing Li
Caisheng Chen
author_facet Jing Li
Caisheng Chen
author_sort Jing Li
collection DOAJ
description We focus on the following elliptic system with critical Sobolev exponents:  -div⁡∇up-2∇u+m(x)up-2u=λup⁎-2u+(1/η)Gu(u,v),  x∈RN; -div⁡∇vq-2∇v+n(x)vq-2v=μvq⁎-2v+(1/η)Gv(u,v),  x∈RN; u(x)>0,v(x)>0,  x∈RN, where μ,λ>0,1<p≤q<N, either η∈(1,p) or η∈(q,p⁎), and critical Sobolev exponents p⁎=pN/(N-p) and q⁎=qN/(N-q). Conditions on potential functions m(x),n(x) lead to no compact embedding. Relying on concentration-compactness principle, mountain pass lemma, and genus theory, the existence of solutions to the elliptic system with η∈(q,p⁎) or η∈(1,p) will be established.
format Article
id doaj-art-1486300432b0470aa105425d20bfa61c
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-1486300432b0470aa105425d20bfa61c2025-02-03T05:53:15ZengWileyAdvances in Mathematical Physics1687-91201687-91392018-01-01201810.1155/2018/64583956458395Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RNJing Li0Caisheng Chen1College of Science, Hohai University, Nanjing 210098, ChinaCollege of Science, Hohai University, Nanjing 210098, ChinaWe focus on the following elliptic system with critical Sobolev exponents:  -div⁡∇up-2∇u+m(x)up-2u=λup⁎-2u+(1/η)Gu(u,v),  x∈RN; -div⁡∇vq-2∇v+n(x)vq-2v=μvq⁎-2v+(1/η)Gv(u,v),  x∈RN; u(x)>0,v(x)>0,  x∈RN, where μ,λ>0,1<p≤q<N, either η∈(1,p) or η∈(q,p⁎), and critical Sobolev exponents p⁎=pN/(N-p) and q⁎=qN/(N-q). Conditions on potential functions m(x),n(x) lead to no compact embedding. Relying on concentration-compactness principle, mountain pass lemma, and genus theory, the existence of solutions to the elliptic system with η∈(q,p⁎) or η∈(1,p) will be established.http://dx.doi.org/10.1155/2018/6458395
spellingShingle Jing Li
Caisheng Chen
Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RN
Advances in Mathematical Physics
title Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RN
title_full Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RN
title_fullStr Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RN
title_full_unstemmed Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RN
title_short Two Types of Solutions to a Class of (p,q)-Laplacian Systems with Critical Sobolev Exponents in RN
title_sort two types of solutions to a class of p q laplacian systems with critical sobolev exponents in rn
url http://dx.doi.org/10.1155/2018/6458395
work_keys_str_mv AT jingli twotypesofsolutionstoaclassofpqlaplaciansystemswithcriticalsobolevexponentsinrn
AT caishengchen twotypesofsolutionstoaclassofpqlaplaciansystemswithcriticalsobolevexponentsinrn