Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations

We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj),  i=0,1,2,…, where fj(x)  (j=0,…,i) are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for...

Full description

Saved in:
Bibliographic Details
Main Authors: E. Messina, Y. Muroya, E. Russo, A. Vecchio
Format: Article
Language:English
Published: Wiley 2008-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2008/867623
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849308251596783616
author E. Messina
Y. Muroya
E. Russo
A. Vecchio
author_facet E. Messina
Y. Muroya
E. Russo
A. Vecchio
author_sort E. Messina
collection DOAJ
description We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj),  i=0,1,2,…, where fj(x)  (j=0,…,i) are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.
format Article
id doaj-art-146c5997805c4eb4bef558e8f52cddbe
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2008-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-146c5997805c4eb4bef558e8f52cddbe2025-08-20T03:54:29ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2008-01-01200810.1155/2008/867623867623Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete EquationsE. Messina0Y. Muroya1E. Russo2A. Vecchio3Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, ItalyDepartment of Mathematics, Waseda University, 3-4-1 Ohkubo Shinjuku-ku, Tokyo 169-8555, JapanDipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, ItalyIstituto per le Applicazioni del Calcolo “Mauro Picone”, Sede di Napoli, Via P. Castellino 111, 80131 Napoli, ItalyWe consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj),  i=0,1,2,…, where fj(x)  (j=0,…,i) are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.http://dx.doi.org/10.1155/2008/867623
spellingShingle E. Messina
Y. Muroya
E. Russo
A. Vecchio
Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
Discrete Dynamics in Nature and Society
title Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
title_full Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
title_fullStr Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
title_full_unstemmed Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
title_short Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
title_sort asymptotic behavior of solutions for nonlinear volterra discrete equations
url http://dx.doi.org/10.1155/2008/867623
work_keys_str_mv AT emessina asymptoticbehaviorofsolutionsfornonlinearvolterradiscreteequations
AT ymuroya asymptoticbehaviorofsolutionsfornonlinearvolterradiscreteequations
AT erusso asymptoticbehaviorofsolutionsfornonlinearvolterradiscreteequations
AT avecchio asymptoticbehaviorofsolutionsfornonlinearvolterradiscreteequations