A Review of Traditional and Advanced MPPT Approaches for PV Systems Under Uniformly Insolation and Partially Shaded Conditions

Solar photovoltaic (PV) is a crucial renewable energy source that converts sunlight into electricity using silicon-based semiconductor materials. However, due to the non-linear characteristic behavior of the PV module, the module’s output power varies according to the solar radiation and the ambient...

Full description

Saved in:
Bibliographic Details
Main Authors: Mustafa Sacid Endiz, Göksel Gökkuş, Atıl Emre Coşgun, Hasan Demir
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/3/1031
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solar photovoltaic (PV) is a crucial renewable energy source that converts sunlight into electricity using silicon-based semiconductor materials. However, due to the non-linear characteristic behavior of the PV module, the module’s output power varies according to the solar radiation and the ambient temperature. To address this challenge, maximum power point tracking (MPPT) techniques are employed to extract the maximum amount of power from the PV modules. This paper offers a comprehensive review of widely used traditional and advanced MPPT approaches in PV systems, along with current developments and future directions in the field. Under uniform insolation, these methods are compared based on their strengths and weaknesses, including sensed parameters, circuitry, tracking speed, implementation complexity, true MPPT, accuracy, and cost. Additionally, MPPT algorithms are evaluated in terms of their performance in reaching maximum power point (MPP) under partial shading condition (PSC). Existing research clearly demonstrates that the advanced techniques exhibit superior efficiency in comparison to traditional methods, although at the cost of increased design complexity and higher expenses. By presenting a detailed review and providing comparison tables of widely used MPPT techniques, this study aims to provide valuable insights for researchers and practitioners in selecting appropriate MPPT approaches for PV applications.
ISSN:2076-3417