Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition.

Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin...

Full description

Saved in:
Bibliographic Details
Main Authors: Sarah L Sherrington, Eleanor Sorsby, Nabeel Mahtey, Pizga Kumwenda, Megan D Lenardon, Ian Brown, Elizabeth R Ballou, Donna M MacCallum, Rebecca A Hall
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-05-01
Series:PLoS Pathogens
Online Access:https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1006403&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this "unmasking" of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection.
ISSN:1553-7366
1553-7374