Dynamic Drag Reduction Effects of Aerospikes and Aerodisks

In order to investigate the dynamic characteristics of blunt aircraft mounted with aerospikes and aerodisks in large-amplitude force-pitching, the Roe spatial scheme and the lower-upper symmetric Gauss-Seidel (LU-SGS) method with dual time step are employed for discretization of unsteady Navier-Stok...

Full description

Saved in:
Bibliographic Details
Main Authors: Rong Han, Wei Liu, Xiaoliang Yang, Xinghua Chang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2021/9370331
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to investigate the dynamic characteristics of blunt aircraft mounted with aerospikes and aerodisks in large-amplitude force-pitching, the Roe spatial scheme and the lower-upper symmetric Gauss-Seidel (LU-SGS) method with dual time step are employed for discretization of unsteady Navier-Stokes (N-S) equations. A parametric investigation on the flow fields is conducted by altering the pitching period, aerospike length, and aerodisk diameter consequently via a variable-controlling procedure. Dynamic characteristics of aerodynamic drag as well as the visualization of unsteady flow fields are achieved, and the results show that the aerodynamics of hypersonic aircraft under the condition of large-amplitude force-pitching vibration have hysteresis characteristics affected by periods of force-pitching vibration. In addition, when changing aerospike length and aerodisk diameter, the variation tendency of drag reduction efficiency is determined by the pitching angle of the oscillation process.
ISSN:1687-5966
1687-5974