Fasciculation distribution in a healthy population assessed with diffusion tensor imaging

Abstract Fasciculations, a hallmark of motor neuron diseases, also occur in healthy individuals, highlighting the need to understand fasciculation intensity and distribution. Motor unit MRI (MUMRI) can assess fasciculations in large volumes but is not widely applied. We hypothesize that a more commo...

Full description

Saved in:
Bibliographic Details
Main Authors: Linda Heskamp, Lara Schlaffke, Johannes Forsting, Boudewijn T. H. M. Sleutjes, H. Stephan Goedee, Martijn Froeling
Format: Article
Language:English
Published: Wiley 2025-03-01
Series:Physiological Reports
Subjects:
Online Access:https://doi.org/10.14814/phy2.70247
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Fasciculations, a hallmark of motor neuron diseases, also occur in healthy individuals, highlighting the need to understand fasciculation intensity and distribution. Motor unit MRI (MUMRI) can assess fasciculations in large volumes but is not widely applied. We hypothesize that a more common MRI technique, diffusion tensor imaging (DTI), can also detect fasciculation when correcting for low signal‐to‐noise ratios and signal variability. We first systematically compared MUMRI and DTI in upper leg muscles of healthy subjects (n = 5). Secondly, we retrospectively determined fasciculation intensity and distribution in lower extremity muscles of 30 healthy subjects using DTI (n = 30). DTI and MUMRI had comparable sensitivity (75%) and precision (80%) to expert reviews. In our healthy cohort, fasciculations were more prevalent in the lower legs than upper legs (13.9 ± 11.5% vs. 9.8 ± 6.3%, p = 0.011), particularly in the soleus (9.3 ± 8.1%). This effect persisted after normalizing for muscle volume (7.2 ± 5.1%/dm3 vs. 2.9 ± 1.8%/dm3, p < 0.001). Lower leg fasciculations were larger compared to upper leg fasciculations (0.81 ± 0.31 cm3 vs. 0.54 ± 0.15 cm3, p < 0.001). Longitudinal analysis showed consistent fasciculation distribution over 8 months (n = 13, ICC = 0.803). In conclusion, muscle DTI detects fasciculations in all lower extremity muscles, enabling retrospective analysis of existing datasets and reducing the need for prospective MUMRI studies if muscle DTI is already acquired.
ISSN:2051-817X