Structural Health Monitoring of Concrete Bridges Through Artificial Intelligence: A Narrative Review

Concrete has been one of the most essential building materials for decades, valued for its durability, cost efficiency, and wide availability of required components. Over time, the number of concrete bridges has been drastically increasing, highlighting the need for timely structural health monitori...

Full description

Saved in:
Bibliographic Details
Main Authors: Vijay Prakash, Carl James Debono, Muhammad Ali Musarat, Ruben Paul Borg, Dylan Seychell, Wei Ding, Jiangpeng Shu
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/9/4855
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Concrete has been one of the most essential building materials for decades, valued for its durability, cost efficiency, and wide availability of required components. Over time, the number of concrete bridges has been drastically increasing, highlighting the need for timely structural health monitoring (SHM) to ensure their safety and long-term durability. Therefore, a narrative review was conducted to examine the use of Artificial Intelligence (AI)-integrated techniques in the SHM of concrete bridges for more effective monitoring. Moreover, this review also examined significant damage observed in various types of concrete bridges, with particular emphasis on concrete cracking, detection methods, and identification accuracy. Evidence points to the fact that the conventional SHM of concrete bridges relies on manual inspections that are time-consuming, error-prone, and require frequent checks, while AI-driven SHM methods have emerged as promising alternatives, especially through Machine Learning- and Deep Learning-based solutions. In addition, it was noticeable that integrating multimodal AI approaches improved the accuracy and reliability of concrete bridge assessments. Furthermore, this review is essential as it also addresses critical gaps in SHM approaches and suggests developing more accurate detection techniques, providing enhanced spatial resolution for monitoring concrete bridges.
ISSN:2076-3417