An Operator-Difference Method for Telegraph Equations Arising in Transmission Lines

A second-order linear hyperbolic equation with time-derivative term subject to appropriate initial and Dirichlet boundary conditions is considered. Second-order unconditionally absolutely stable difference scheme in (Ashyralyev et al. 2011) generated by integer powers of space operator is modified f...

Full description

Saved in:
Bibliographic Details
Main Author: Mehmet Emir Koksal
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2011/561015
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564384342212608
author Mehmet Emir Koksal
author_facet Mehmet Emir Koksal
author_sort Mehmet Emir Koksal
collection DOAJ
description A second-order linear hyperbolic equation with time-derivative term subject to appropriate initial and Dirichlet boundary conditions is considered. Second-order unconditionally absolutely stable difference scheme in (Ashyralyev et al. 2011) generated by integer powers of space operator is modified for the equation. This difference scheme is unconditionally absolutely stable. Stability estimates for the solution of the difference scheme are presented. Various numerical examples are tested for showing the usefulness of the difference scheme. Numerical solutions of the examples are provided using modified unconditionally absolutely stable second-order operator-difference scheme. Finally, the obtained results are discussed by comparing with other existing numerical solutions. The modified difference scheme is applied to analyze a real engineering problem related with a lossy power transmission line.
format Article
id doaj-art-1385605afeea4ac9ad52af70d1fc4806
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-1385605afeea4ac9ad52af70d1fc48062025-02-03T01:11:11ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2011-01-01201110.1155/2011/561015561015An Operator-Difference Method for Telegraph Equations Arising in Transmission LinesMehmet Emir Koksal0Department of Elementary Mathematics Education, Mevlana University, 42003 Konya, TurkeyA second-order linear hyperbolic equation with time-derivative term subject to appropriate initial and Dirichlet boundary conditions is considered. Second-order unconditionally absolutely stable difference scheme in (Ashyralyev et al. 2011) generated by integer powers of space operator is modified for the equation. This difference scheme is unconditionally absolutely stable. Stability estimates for the solution of the difference scheme are presented. Various numerical examples are tested for showing the usefulness of the difference scheme. Numerical solutions of the examples are provided using modified unconditionally absolutely stable second-order operator-difference scheme. Finally, the obtained results are discussed by comparing with other existing numerical solutions. The modified difference scheme is applied to analyze a real engineering problem related with a lossy power transmission line.http://dx.doi.org/10.1155/2011/561015
spellingShingle Mehmet Emir Koksal
An Operator-Difference Method for Telegraph Equations Arising in Transmission Lines
Discrete Dynamics in Nature and Society
title An Operator-Difference Method for Telegraph Equations Arising in Transmission Lines
title_full An Operator-Difference Method for Telegraph Equations Arising in Transmission Lines
title_fullStr An Operator-Difference Method for Telegraph Equations Arising in Transmission Lines
title_full_unstemmed An Operator-Difference Method for Telegraph Equations Arising in Transmission Lines
title_short An Operator-Difference Method for Telegraph Equations Arising in Transmission Lines
title_sort operator difference method for telegraph equations arising in transmission lines
url http://dx.doi.org/10.1155/2011/561015
work_keys_str_mv AT mehmetemirkoksal anoperatordifferencemethodfortelegraphequationsarisingintransmissionlines
AT mehmetemirkoksal operatordifferencemethodfortelegraphequationsarisingintransmissionlines