A Subjective Expressions Extracting Method for Social Opinion Mining

Opinion mining plays an important role in public opinion monitoring, commodity evaluation, government governance, and other areas. One of the basic tasks of opinion mining is to extract the expression elements, which can be further divided into direct subjective expression and expressive subjective...

Full description

Saved in:
Bibliographic Details
Main Authors: Mingyong Yin, Haizhou Wang, Xingshu Chen, Hong Yan, Rui Tang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/2784826
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Opinion mining plays an important role in public opinion monitoring, commodity evaluation, government governance, and other areas. One of the basic tasks of opinion mining is to extract the expression elements, which can be further divided into direct subjective expression and expressive subjective expression. For the task of subjective expression extraction, the methods based on neural network can learn features automatically without exhaustive feature engineering and have been proved to be efficient for opinion mining. Constructing adequate input vector which can encode sufficient information is a challenge of neural network-based approach. To cope with this problem, a novel representation method that combines the different features with word vectors is proposed. Then, we use neural network and conditional random field to train and predict the expressions and carry out comparative experiments on different methods and features combinations. Experimental results show the performance of the proposed model, and the F value outperforms other methods in comparative experimental dataset. Our work can provide hint for further research on opinion expression extraction.
ISSN:1026-0226
1607-887X