Upscaling Frameworks Drive Prediction Accuracy and Uncertainty When Mapping Aboveground Biomass Density from the Synergism of Spaceborne LiDAR, SAR, and Passive Optical Data
Accurate mapping of aboveground biomass density (AGBD) is vital for ecological research and carbon cycle monitoring. Integrating multi-source remote sensing data offers significant potential to enhance the accuracy and coverage of AGBD estimates. This study evaluated three upscaling frameworks for i...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/14/2340 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Accurate mapping of aboveground biomass density (AGBD) is vital for ecological research and carbon cycle monitoring. Integrating multi-source remote sensing data offers significant potential to enhance the accuracy and coverage of AGBD estimates. This study evaluated three upscaling frameworks for integrating GEDI LiDAR, SAR, and optical satellite data to create wall-to-wall AGBD maps. The frameworks tested in this paper were: (1) a single-step approach using optical imagery, (2) a two-stage approach with GEDI-derived variables, and (3) a three-stage approach combining imagery and in situ-derived allometries. Internal validation showed that framework 1 achieved the lowest root mean square difference (%RMSD) of 53.3% and highest coefficient of determination (R<sup>2</sup>) of 0.53. An independent external validation of the AGBD map was performed using in situ observations, also revealing that framework 1 was the most accurate (%RMSD = 39.3% and R<sup>2</sup> = 0.93), while frameworks 2 and 3 were less accurate (%RMSD = 54.7, 44.7 and R<sup>2</sup> = 0.95, 0.90, respectively). Herein, we show that upscaling frameworks significantly impacted AGBD map uncertainty and the magnitude of estimate differences. Our findings suggest that upscaling framework 1 based on a single step approach was the most effective for capturing detailed AGBD variations, while careful consideration of model sensitivity and map uncertainties is essential for reliable AGBD estimation. This study provides valuable insights for advancing forest AGBD monitoring and highlights the potential for further enhancements in remote sensing methodologies. |
|---|---|
| ISSN: | 2072-4292 |