Sustainability of a Three-Species Predator–Prey Model in Tumor-Immune Dynamics with Periodic Treatment
Using a tumor-immune growth model, we investigate how immunotherapy affects its dynamical characteristics. Specifically, we extend the prey–predator model of tumor cells and immune cells by including periodic immunotherapy, the nonlinear damping of cancer cells, and the dynamics of a healthy cell po...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/3/264 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Using a tumor-immune growth model, we investigate how immunotherapy affects its dynamical characteristics. Specifically, we extend the prey–predator model of tumor cells and immune cells by including periodic immunotherapy, the nonlinear damping of cancer cells, and the dynamics of a healthy cell population, and investigate the effects of the model parameters. The ideal value of immunotherapy, which promotes the growth of immune (and healthy) cells while contributing to the elimination or control of the cancer cells, is determined by using Fisher information as a measure of variability throughout our study. |
|---|---|
| ISSN: | 1099-4300 |