Sustainability of a Three-Species Predator–Prey Model in Tumor-Immune Dynamics with Periodic Treatment

Using a tumor-immune growth model, we investigate how immunotherapy affects its dynamical characteristics. Specifically, we extend the prey–predator model of tumor cells and immune cells by including periodic immunotherapy, the nonlinear damping of cancer cells, and the dynamics of a healthy cell po...

Full description

Saved in:
Bibliographic Details
Main Authors: Avan Al-Saffar, Eun-jin Kim
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/3/264
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using a tumor-immune growth model, we investigate how immunotherapy affects its dynamical characteristics. Specifically, we extend the prey–predator model of tumor cells and immune cells by including periodic immunotherapy, the nonlinear damping of cancer cells, and the dynamics of a healthy cell population, and investigate the effects of the model parameters. The ideal value of immunotherapy, which promotes the growth of immune (and healthy) cells while contributing to the elimination or control of the cancer cells, is determined by using Fisher information as a measure of variability throughout our study.
ISSN:1099-4300