Thinned Eisenstein Fractal Antenna Array Using Multi-Objective Optimization for Wideband Performance

This paper introduces a novel framework for designing wideband antenna arrays using self-similar Eisenstein fractal geometries combined with multi-objective evolutionary optimization techniques. The approach employs multi-objective binary differential evolution (MO-BDE) for array thinning and multi-...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis E. Cepeda , Leopoldo A. Garza , Marco A. Panduro , Alberto Reyna , Manuel A. Zuñiga 
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/10/5584
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849711900456124416
author Luis E. Cepeda 
Leopoldo A. Garza 
Marco A. Panduro 
Alberto Reyna 
Manuel A. Zuñiga 
author_facet Luis E. Cepeda 
Leopoldo A. Garza 
Marco A. Panduro 
Alberto Reyna 
Manuel A. Zuñiga 
author_sort Luis E. Cepeda 
collection DOAJ
description This paper introduces a novel framework for designing wideband antenna arrays using self-similar Eisenstein fractal geometries combined with multi-objective evolutionary optimization techniques. The approach employs multi-objective binary differential evolution (MO-BDE) for array thinning and multi-objective particle swarm optimization (MO-PSO) for optimizing amplitude excitations. This integrated methodology reduces the number of active elements while enhancing overall array performance. The optimization process targets minimizing peak side lobe levels and maximizing directivity over a broad frequency range. Two designs are explored: one optimized at a primary frequency, and another providing consistent wideband behavior. The proposed method achieves a 37.5% reduction in active elements. Design A shows an SLL reduction of −12 dB at the target frequency, while Design B maintains up to −3 dB SLL improvement across the bandwidth. The results confirm the efficacy of the proposed synthesis method for developing scalable, energy-efficient antenna arrays for next-generation systems.
format Article
id doaj-art-135a508b28254f8bac29aa2d93a26f8c
institution DOAJ
issn 2076-3417
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-135a508b28254f8bac29aa2d93a26f8c2025-08-20T03:14:29ZengMDPI AGApplied Sciences2076-34172025-05-011510558410.3390/app15105584Thinned Eisenstein Fractal Antenna Array Using Multi-Objective Optimization for Wideband PerformanceLuis E. Cepeda 0Leopoldo A. Garza 1Marco A. Panduro 2Alberto Reyna 3Manuel A. Zuñiga 4Electrical and Electronic Engineering Department, Autonomous University of Tamaulipas, Reynosa 88779, MexicoElectrical and Electronic Engineering Department, Autonomous University of Tamaulipas, Reynosa 88779, MexicoDepartment of Electronic and Telecommunications, CICESE Research Center, Ensenada 22860, MexicoElectrical and Electronic Engineering Department, Autonomous University of Tamaulipas, Reynosa 88779, MexicoElectrical and Electronic Engineering Department, Autonomous University of Tamaulipas, Reynosa 88779, MexicoThis paper introduces a novel framework for designing wideband antenna arrays using self-similar Eisenstein fractal geometries combined with multi-objective evolutionary optimization techniques. The approach employs multi-objective binary differential evolution (MO-BDE) for array thinning and multi-objective particle swarm optimization (MO-PSO) for optimizing amplitude excitations. This integrated methodology reduces the number of active elements while enhancing overall array performance. The optimization process targets minimizing peak side lobe levels and maximizing directivity over a broad frequency range. Two designs are explored: one optimized at a primary frequency, and another providing consistent wideband behavior. The proposed method achieves a 37.5% reduction in active elements. Design A shows an SLL reduction of −12 dB at the target frequency, while Design B maintains up to −3 dB SLL improvement across the bandwidth. The results confirm the efficacy of the proposed synthesis method for developing scalable, energy-efficient antenna arrays for next-generation systems.https://www.mdpi.com/2076-3417/15/10/5584antenna arrayfractal arraywidebandevolutionary computingmulti-objective optimization
spellingShingle Luis E. Cepeda 
Leopoldo A. Garza 
Marco A. Panduro 
Alberto Reyna 
Manuel A. Zuñiga 
Thinned Eisenstein Fractal Antenna Array Using Multi-Objective Optimization for Wideband Performance
Applied Sciences
antenna array
fractal array
wideband
evolutionary computing
multi-objective optimization
title Thinned Eisenstein Fractal Antenna Array Using Multi-Objective Optimization for Wideband Performance
title_full Thinned Eisenstein Fractal Antenna Array Using Multi-Objective Optimization for Wideband Performance
title_fullStr Thinned Eisenstein Fractal Antenna Array Using Multi-Objective Optimization for Wideband Performance
title_full_unstemmed Thinned Eisenstein Fractal Antenna Array Using Multi-Objective Optimization for Wideband Performance
title_short Thinned Eisenstein Fractal Antenna Array Using Multi-Objective Optimization for Wideband Performance
title_sort thinned eisenstein fractal antenna array using multi objective optimization for wideband performance
topic antenna array
fractal array
wideband
evolutionary computing
multi-objective optimization
url https://www.mdpi.com/2076-3417/15/10/5584
work_keys_str_mv AT luisecepeda thinnedeisensteinfractalantennaarrayusingmultiobjectiveoptimizationforwidebandperformance
AT leopoldoagarza thinnedeisensteinfractalantennaarrayusingmultiobjectiveoptimizationforwidebandperformance
AT marcoapanduro thinnedeisensteinfractalantennaarrayusingmultiobjectiveoptimizationforwidebandperformance
AT albertoreyna thinnedeisensteinfractalantennaarrayusingmultiobjectiveoptimizationforwidebandperformance
AT manuelazuniga thinnedeisensteinfractalantennaarrayusingmultiobjectiveoptimizationforwidebandperformance