Research on the Mechanism of the Impact of Green View Index of Urban Streets on Thermal Environment: A Machine Learning-Driven Empirical Study in Hangzhou, China

This study investigates the relationship between Green View Index (GVI) and street thermal environment in Hangzhou’s main urban area during summer, quantifying urban greenery’s impact on diurnal/nocturnal thermal conditions to inform urban heat island mitigation strategies. Multi-source data (3D mor...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiguan Wang, Yanjun Hu, Hai Yan
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/16/5/617
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the relationship between Green View Index (GVI) and street thermal environment in Hangzhou’s main urban area during summer, quantifying urban greenery’s impact on diurnal/nocturnal thermal conditions to inform urban heat island mitigation strategies. Multi-source data (3D morphological metrics, LCZ classifications, mobile measurements) were integrated with deep learning-derived street-level GVI through image analysis. A random forest-multiple regression hybrid model evaluated spatiotemporal variations and GVI impacts across time, street orientation, and urban-rural gradients. Key findings include: (1) Urban street Ta prediction model: Daytime model: R<sup>2</sup> = 0.54, RMSE = 0.33 °C; Nighttime model: R<sup>2</sup> = 0.71, RMSE = 0.42 °C. (2) GVI shows significant inverse association with temperature, A 0.1 unit increase in GVI reduced temperatures by 0.124°C during the day and 0.020 °C at night. (3) Orientation effects: North–south streets exhibit strongest cooling (1.85 °C daytime reduction), followed by east–west; northeast–southwest layouts show negligible impact; (4) Canyon geometry: Low-aspect canyons (H/W < 1) enhance cooling efficiency, while high-aspect canyons (H/W > 2) retain nocturnal heat despite daytime cooling; (5) Urban-rural gradient: Cooling peaks in urban-fringe zones (10–15 km daytime, 15–20 km nighttime), contrasting with persistent nocturnal warmth in urban cores (0–5 km); (6) LCZ variability: Daytime cooling intensity peaks in LCZ3, nighttime in LCZ6. These findings offer scientific evidence and empirical support for urban thermal environment optimization strategies in urban planning and landscape design. We recommend dynamic coupling of street orientation, three-dimensional morphological characteristics, and vegetation configuration parameters to formulate differentiated thermal environment design guidelines, enabling precise alignment between mitigation measures and spatial context-specific features.
ISSN:2073-4433