Simulation of Novel NEMS Contact Switch Using MRTD with Alterable Steps

In order to apply Radio Frequency Micro-nano-Electro-Mechanical System (MEMS/NEMS) technologies to produce miniature, high isolation, low insertion loss, good linear characteristic, and low power consumption microwave switches, we present a novel NEMS switch with nanoscaling in this paper through th...

Full description

Saved in:
Bibliographic Details
Main Authors: Wen-Ge Yu, Kang-Qu Zhou, Zheng-Zhong Wu, Ting-Hong Yang, Jing Zhao
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2010/492074
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to apply Radio Frequency Micro-nano-Electro-Mechanical System (MEMS/NEMS) technologies to produce miniature, high isolation, low insertion loss, good linear characteristic, and low power consumption microwave switches, we present a novel NEMS switch with nanoscaling in this paper through the analysis of electrics and mechanics of the RF switch. The measured data show the pull-in voltage of 24.1 V and the good RF performance of the insertion loss of below −10 dB at 0 GHz on the “on” state, and the isolation of beyond –40 dB at 0–40 GHz on the “off” state, indicating that the witch is suitable for the 0–40 GHz applications. Our analysis shows that the NEMS switch not only can work in wide frequency bands, but also has better isolation performance in lower frequency, thus extending the application to the lower band. The Haar-wavelet-based multiresolution time domain (MRTD) with compactly supported scaling function is used for modeling and analyzing the nanomachine switch for the first time. The major advantage of the MRTD algorithms is their capability to develop real-time time and space adaptive grids through the efficient thresholding of the wavelet coefficients. The error between the measured and computed results is below 5%, this indicated that the Haar-wavelet-based multiresolution time domain was suitable for simulating the nano-scaling contact switch.
ISSN:1687-9503
1687-9511