Effect of preparation method on the microstructure and optical properties of Y2O3–MgO composite ceramics

Yttrium oxide–magnesium oxide (Y2O3–MgO) composite nanopowders were synthesized via three distinct methods: sol–gel, co-precipitation and glycine–nitrate process. The synthesized powders were calcined at various temperatures, and their microstructure, specific surface area and particle size were cha...

Full description

Saved in:
Bibliographic Details
Main Authors: Xi Zhang, Xiao Li, Jun Yin, Shengquan Yu, Jing Wan
Format: Article
Language:English
Published: World Scientific Publishing 2025-04-01
Series:Journal of Advanced Dielectrics
Subjects:
Online Access:https://www.worldscientific.com/doi/10.1142/S2010135X24500188
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Yttrium oxide–magnesium oxide (Y2O3–MgO) composite nanopowders were synthesized via three distinct methods: sol–gel, co-precipitation and glycine–nitrate process. The synthesized powders were calcined at various temperatures, and their microstructure, specific surface area and particle size were characterized. A comparative study was conducted to assess the impact of the synthesis method on the microstructure and transparency of the resulting ceramic sintering. Notably, the powder synthesized by the sol–gel technique exhibited the highest specific surface area and superior light transmittance, reaching a maximum of 85.33% at a wavelength of 5.31[Formula: see text]m.
ISSN:2010-135X
2010-1368