Comparing orthodontic pre-treatment information provided by large language models
Abstract This study collected and screened the 50 most common pre-treatment consultation questions from adult orthodontic patients through clinical practice. Responses to these questions were generated using three large language models: Ernie Bot, ChatGPT, and Gemini. The responses were evaluated ac...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-05-01
|
| Series: | BMC Oral Health |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12903-025-06246-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract This study collected and screened the 50 most common pre-treatment consultation questions from adult orthodontic patients through clinical practice. Responses to these questions were generated using three large language models: Ernie Bot, ChatGPT, and Gemini. The responses were evaluated across six dimensions: Professional Accuracy (PA), Accuracy of Content(AC), Clarity and Comprehensibility (CC), Personalization and Relevance (PR), Information Completeness (IC), and Empathy and Patient-Centeredness (EHC). Results indicated that scores for each group in various dimensions primarily fell within the range of 3–4 points, with relatively few high-quality scores (5 points). While large language models demonstrate some capability in addressing open-ended questions, their use in medical consultation, particularly in orthodontic medicine, requires caution and further integration with professional guidance and verification. Future research and technological improvements should focus on enhancing AI(Artificial Intelligence) performance in accuracy, information completeness, and humanistic care to better meet the needs of diverse clinical scenarios. |
|---|---|
| ISSN: | 1472-6831 |