Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry

<p>This work investigates scattering matrix elements during different Saharan dust outbreaks over Granada (southeast Spain) in 2022 using a polarized imaging nephelometer (PI-Neph) capable of measuring continuously the phase function (<span class="inline-formula"><i>F<...

Full description

Saved in:
Bibliographic Details
Main Authors: E. Bazo, D. Pérez-Ramírez, A. Valenzuela, J. V. Martins, G. Titos, A. Cazorla, F. Rejano, D. Patrón, A. Díaz-Zurita, F. J. García-Izquierdo, D. Fuertes, L. Alados-Arboledas, F. J. Olmo
Format: Article
Language:English
Published: Copernicus Publications 2025-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/6325/2025/acp-25-6325-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849424585034825728
author E. Bazo
E. Bazo
D. Pérez-Ramírez
D. Pérez-Ramírez
A. Valenzuela
A. Valenzuela
J. V. Martins
G. Titos
G. Titos
A. Cazorla
A. Cazorla
F. Rejano
F. Rejano
D. Patrón
D. Patrón
A. Díaz-Zurita
A. Díaz-Zurita
F. J. García-Izquierdo
D. Fuertes
L. Alados-Arboledas
L. Alados-Arboledas
F. J. Olmo
F. J. Olmo
author_facet E. Bazo
E. Bazo
D. Pérez-Ramírez
D. Pérez-Ramírez
A. Valenzuela
A. Valenzuela
J. V. Martins
G. Titos
G. Titos
A. Cazorla
A. Cazorla
F. Rejano
F. Rejano
D. Patrón
D. Patrón
A. Díaz-Zurita
A. Díaz-Zurita
F. J. García-Izquierdo
D. Fuertes
L. Alados-Arboledas
L. Alados-Arboledas
F. J. Olmo
F. J. Olmo
author_sort E. Bazo
collection DOAJ
description <p>This work investigates scattering matrix elements during different Saharan dust outbreaks over Granada (southeast Spain) in 2022 using a polarized imaging nephelometer (PI-Neph) capable of measuring continuously the phase function (<span class="inline-formula"><i>F</i><sub>11</sub></span>) and the polarized phase function (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a6e3f1eb3299ee1cf773cb5249d5f2b9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00001.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00001.png"/></svg:svg></span></span>) at three different wavelengths (405, 515 and 660 nm) in the range 5–175°. The focus is on two extreme dust events (PM<span class="inline-formula"><sub>10</sub></span> <span class="inline-formula"><i>&gt;</i></span> 1000 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) in March 2022. During the peaks of these events <span class="inline-formula"><i>F</i><sub>11</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="eb7bfb3856e0976d3ae203346717101b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00002.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00002.png"/></svg:svg></span></span> show the classical patterns observed for dust samples in laboratory measurements available in the Granada–Amsterdam Light Scattering Database at all wavelengths. However, for the moments prior to and after the peaks the results reveal important sensitivity in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a1251db68b6a7deb25e36c9406ccfa2b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00003.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00003.png"/></svg:svg></span></span> at 405 nm. For the other wavelengths, however, this difference in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="54ea5d92af68558ddf67c927269fa877"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00004.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00004.png"/></svg:svg></span></span> is not evident. Moreover, no remarkable changes are found in <span class="inline-formula"><i>F</i><sub>11</sub></span>, which is always characterized by strong predominance of forward scattering. The analyses of more frequent and moderate events recorded in summer 2022 (PM<span class="inline-formula"><sub>10</sub></span> between 50 and 100 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) revealed <span class="inline-formula"><i>F</i><sub>11</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d0eb8a74480392a1e8346d3ad295ed0f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00005.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00005.png"/></svg:svg></span></span> patterns like those observed prior to and after the extreme events. The combination of PI-Neph measurements with additional in situ instrumentation allowed a typing classification that revealed the peaks in the extreme dust events as pure dust, while for the rest of cases it remarked a mixture of dust with urban background pollution. In addition, simulations with the Generalized Retrieval of Atmosphere and Surface Properties (GRASP) code explain the different patterns in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4b3a52d979b51bf2696ecfd96fa30942"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00006.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00006.png"/></svg:svg></span></span>, with changes in the refractive indexes and with the different contributions of the fine and coarse mode.</p>
format Article
id doaj-art-129b3ea643e44e4a92268f0dfbeac34f
institution Kabale University
issn 1680-7316
1680-7324
language English
publishDate 2025-06-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-129b3ea643e44e4a92268f0dfbeac34f2025-08-20T03:30:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-06-01256325635210.5194/acp-25-6325-2025Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometryE. Bazo0E. Bazo1D. Pérez-Ramírez2D. Pérez-Ramírez3A. Valenzuela4A. Valenzuela5J. V. Martins6G. Titos7G. Titos8A. Cazorla9A. Cazorla10F. Rejano11F. Rejano12D. Patrón13D. Patrón14A. Díaz-Zurita15A. Díaz-Zurita16F. J. García-Izquierdo17D. Fuertes18L. Alados-Arboledas19L. Alados-Arboledas20F. J. Olmo21F. J. Olmo22Andalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, SpainDepartment of Physics and Earth and Space Institute, University of Maryland, Baltimore County, Baltimore, Maryland, USAAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainGRASP-SAS, Remote Sensing Developments, Lille, FranceAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, SpainInstituto de Astrofísica de Andalucía (IAA-CSIC), Granada 18008, SpainGRASP-SAS, Remote Sensing Developments, Lille, FranceAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada 18006, SpainDepartment of Applied Physics, University of Granada, Granada 18071, Spain<p>This work investigates scattering matrix elements during different Saharan dust outbreaks over Granada (southeast Spain) in 2022 using a polarized imaging nephelometer (PI-Neph) capable of measuring continuously the phase function (<span class="inline-formula"><i>F</i><sub>11</sub></span>) and the polarized phase function (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a6e3f1eb3299ee1cf773cb5249d5f2b9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00001.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00001.png"/></svg:svg></span></span>) at three different wavelengths (405, 515 and 660 nm) in the range 5–175°. The focus is on two extreme dust events (PM<span class="inline-formula"><sub>10</sub></span> <span class="inline-formula"><i>&gt;</i></span> 1000 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) in March 2022. During the peaks of these events <span class="inline-formula"><i>F</i><sub>11</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="eb7bfb3856e0976d3ae203346717101b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00002.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00002.png"/></svg:svg></span></span> show the classical patterns observed for dust samples in laboratory measurements available in the Granada–Amsterdam Light Scattering Database at all wavelengths. However, for the moments prior to and after the peaks the results reveal important sensitivity in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a1251db68b6a7deb25e36c9406ccfa2b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00003.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00003.png"/></svg:svg></span></span> at 405 nm. For the other wavelengths, however, this difference in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="54ea5d92af68558ddf67c927269fa877"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00004.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00004.png"/></svg:svg></span></span> is not evident. Moreover, no remarkable changes are found in <span class="inline-formula"><i>F</i><sub>11</sub></span>, which is always characterized by strong predominance of forward scattering. The analyses of more frequent and moderate events recorded in summer 2022 (PM<span class="inline-formula"><sub>10</sub></span> between 50 and 100 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) revealed <span class="inline-formula"><i>F</i><sub>11</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d0eb8a74480392a1e8346d3ad295ed0f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00005.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00005.png"/></svg:svg></span></span> patterns like those observed prior to and after the extreme events. The combination of PI-Neph measurements with additional in situ instrumentation allowed a typing classification that revealed the peaks in the extreme dust events as pure dust, while for the rest of cases it remarked a mixture of dust with urban background pollution. In addition, simulations with the Generalized Retrieval of Atmosphere and Surface Properties (GRASP) code explain the different patterns in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><msub><mi>F</mi><mn mathvariant="normal">12</mn></msub><mo>/</mo><msub><mi>F</mi><mn mathvariant="normal">11</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4b3a52d979b51bf2696ecfd96fa30942"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-6325-2025-ie00006.svg" width="46pt" height="14pt" src="acp-25-6325-2025-ie00006.png"/></svg:svg></span></span>, with changes in the refractive indexes and with the different contributions of the fine and coarse mode.</p>https://acp.copernicus.org/articles/25/6325/2025/acp-25-6325-2025.pdf
spellingShingle E. Bazo
E. Bazo
D. Pérez-Ramírez
D. Pérez-Ramírez
A. Valenzuela
A. Valenzuela
J. V. Martins
G. Titos
G. Titos
A. Cazorla
A. Cazorla
F. Rejano
F. Rejano
D. Patrón
D. Patrón
A. Díaz-Zurita
A. Díaz-Zurita
F. J. García-Izquierdo
D. Fuertes
L. Alados-Arboledas
L. Alados-Arboledas
F. J. Olmo
F. J. Olmo
Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry
Atmospheric Chemistry and Physics
title Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry
title_full Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry
title_fullStr Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry
title_full_unstemmed Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry
title_short Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry
title_sort phase matrix characterization of long range transported saharan dust using multiwavelength polarized polar imaging nephelometry
url https://acp.copernicus.org/articles/25/6325/2025/acp-25-6325-2025.pdf
work_keys_str_mv AT ebazo phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT ebazo phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT dperezramirez phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT dperezramirez phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT avalenzuela phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT avalenzuela phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT jvmartins phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT gtitos phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT gtitos phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT acazorla phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT acazorla phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT frejano phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT frejano phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT dpatron phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT dpatron phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT adiazzurita phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT adiazzurita phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT fjgarciaizquierdo phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT dfuertes phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT laladosarboledas phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT laladosarboledas phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT fjolmo phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry
AT fjolmo phasematrixcharacterizationoflongrangetransportedsaharandustusingmultiwavelengthpolarizedpolarimagingnephelometry